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Executive summary

This document presents the ICARIA cookbook and offers a set of alternative options and advanced
methodological tools for identifying and optimizing the treatment data gaps, and a list of sources for
collecting any further potentially available data of relevance to conducting climate risk and resilience
assessment of critical assets. As ICARIA aims to establish a robust and efficient framework for climate
adaptation and resilience, such a document aims for serving as a scaffold for lab tests within the project
for application and extension of the currently applied methodologies. Nonetheless, selecting an optimal
or combination of various methodologies can often prove perplexing. It is far from uncommon to
encounter circumstances where data scarcity emerges as a consistent challenge, especially for assets
and services sensitive to the initial amount of available data and bounded by restrictions in accessibility.
Consequently, the role of the existing climate data in fully characterizing the overall risk/impact
assessment methodology from a single or multi-hazard perspective, supporting the selection of optimal
methodologies, identifying data gaps, and ultimately guiding and contributing to the formulation of
effective decision-making policies amidst the exigency of climate change, remains critical. Further, when
confronted with issues in climate adaptation and resilience, it is critical to consider that data gaps
introduce substantial uncertainties in impact assessments, vulnerability analysis, and the design of
adaptation strategies, thereby hindering the development of effective resilience measures capable of
invariance to various contexts. To support addressing the critical challenge of data gaps, within ICARIA's
goals, the design of a supplementary cookbook is included, aimed at assisting practitioners operating
within ICARIA in identifying alternative methodologies for data creation and augmentation in supporting
the applied viable methodologies being employed in cases where the need to extend and support the
currently chosen ones, remains necessary. In section 2, the cookbook attempts to include briefly some of
the methodologies applied in ICARIA so far, a list of currently identified data gaps, and provide
suggestions for downscaling techniques, hazard assessment, exposure analysis, vulnerability evaluation,
and strategies to address data gaps, exploring alternative methods and concepts relevant to the
application of climate-related methodologies in resilience and adaptation. To support any further lab
tests within ICARIA, a template table for treating data gaps is proposed. Furthermore, it includes sets of
additional data sources for assets and services, as examples for further application and reproduction in
other areas of interest. While the cookbook covers different methodologies, the sequence is not
paramount; rather, the relevance to the core resilience domains and compatibility with the ICARIA project
are the primary considerations. In section 3, a domain user survey is conducted utilizing input from
experts with diverse backgrounds, offering additional information on current data-driven methodologies
related but not limited to climate change and adaptation, and additional resources for the practitioners of
the ICARIA project. Finally, in section 4, a summary with reflections on treating data gaps is offered,
summarizing in a condensed manner the current knowledge and state-of-the-art.

This deliverable is the first result of T1.3 with inputs from T1.1, T1.2, and T1.4, in WP1 and T2.1 in WP2.
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1 Introduction to project ICARIA

The number of climate-related disasters has been progressively increasing in the last two decades
and this trend could be drastically exacerbated in the medium- and long-term horizons according to
climate change projections. It is estimated that, between 2000 and 2019, 7,348 natural hazard-related
disasters have occurred worldwide, causing 2.97 trillion US$ losses and affecting 4 billion people
(UNDRR, 2020). These numbers represent a sharp increase of the number of recorded disaster events
in comparison with the previous twenty years. Much of this increase is due to a significant rise in the
number of climate-related disasters (heatwaves, droughts, flooding, etc.), including compound events,
whose frequency is dramatically increasing because of the effects of climate change and the related
global warming. In the future, by mid-century, the world stands to lose around 10% of total economic
value from climate change if temperature increase stays on the current trajectory, and both the Paris
Agreement and 2050 net-zero emissions targets are not met.

In this framework, Project ICARIA has the overall objective to promote the definition and the
use of a comprehensive asset level modeling framework to achieve a better understanding
about climate related impacts produced by complex, compound and cascading disasters and
the possible risk reduction provided by suitable, sustainable and cost-effective adaptation
solutions.

This project will be especially devoted to critical assets and infrastructures that are
susceptible to climate change, in a sense that its local effects can result in significant
increases in cost of potential losses for unplanned outages and failures, as well as
maintenance – unless an effort is undertaken in making these assets more resilient. ICARIA
aims to understand how future climate might affect life-cycle costs of these assets in the
coming decades and to ensure that, where possible, investments in terms of adaptation
measures are made up front to face these changes.

To achieve this aim, ICARIA has identified 7 Strategic Subobjectives (SSO), each one related to one or
several work packages. They have been classified according to different categories: scientific,
corresponding to research activities for advances beyond the state of the art (SSO1, SSO2, SSO3,
SSO4, SO5); technological, suggesting and/or developing novel solutions, integrating state-of-the art
and digital advances (SSO6); societal, contributing to improved dialogue, awareness, cooperation and
community engagement as highlighted by the European Climate Pact (SSO7); and related to
dissemination and exploitation, aimed at sharing ICARIA results to a broader audience and number of
regions and communities to maximize project impact (SSO7).

● SSO1.- Achievement of a comprehensive methodology to assess climate related risk produced
by complex, cascading and compound disasters

● SSO2.- Obtaining tailored scenarios for the case studies regions

● SSO3.- Quantify uncertainty and manage data gaps through model input requirements and
innovative methods
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● SSO4.- Increase the knowledge on climate related disasters (including interactions between
compound events and cascading effects) by developing and implementing advanced modeling
for multi-hazard assessment

● SSO5.- Better assessment of holistic resilience and climate-related impacts for current and
future scenarios

● SSO6.- Better decision taking for cost-efficient adaptation solutions by developing a Decision
Support System (DSS) to compare adaptation solutions

● SSO7.- Ensure the use and impact of the ICARIA outputs

D1.3 – Impact modelling data requirements and methods to treat data gap filling and data uncertainty 20
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2 Objectives and context of Deliverable 1.3

The document presents the creation of a complementary cookbook and the results of a domain user
survey conducted within the ICARIA project as a contribution to the strategic sub objective SSO3. -
Quantify uncertainty and manage data gaps through model input requirements and innovative
methods (WP1, WP1 - Project framework, climate scenarios, and modelling inputs). Specifically, this
document corresponds to Deliverable 1.3 and includes the results of Task 1.3 - modelling input
requirements and methods to treat data gaps and uncertainties.

The necessity for a cookbook and a domain survey
Climate change impacts are produced by complex interactions, and are often characterized by
compound events and cascading effects that demand tailored-made, sustainable adaptation
solutions. To support the ICARIA holistic asset-level modelling framework defined in D1.1 (ICARIA,
(2023a)), this deliverable introduces a set of methodologies and tools to treat data gap and
uncertainties with respect to modelling input requirements relevant for the case study areas, which
has been designed as a “cookbook” potentially transferable to other contexts. Additionally, a
dedicated domain user survey has been designed to specifically highlight critical data gaps recurring
in the field of hazard and impact assessment. The necessity of both is preparatory, providing merely a
scaffold for potential support and improvement of the current state-of-the-art methodologies already
employed in ICARIA, which will be then tested in D1.4 (ICARIA, 2024c) for a number of selected data
gaps in the case study areas, and further applied in WP4 to cover all relevant data gaps emerging from
the Trial execution.

The main goals of D1.3 are summarized as follows:
● Identification of recurring data gaps in hazard/impact assessment: this ambitious task is

achieved through a twofold approach. Firstly, ICARIA Case Study Facilitators focused on data
gaps related to the implementation of Trials and Mini-Trials in the case-study areas. In parallel,
experts were engaged via the domain survey, to provide feedback on data-driven techniques
so that the practitioners can comprehensively understand the current limitations and
prioritize which data gaps need to be addressed with priority.

● Creation of a list of alternative methods: to supplement the methodologies identified with
respect to the key variables and datasets emerging from the impact assessment modelling
architecture defined for the ICARIA case studies and based on the proposed holistic modelling
framework (see D1.1, Section 3), and to investigate and identify the possibility for filling of data
gaps via data augmentation/substitution techniques and/or expert knowledge collection.

● Improvement of data granularity supporting quantitative impact assessments: due to the
observed lack of comprehensive datasets that can support assessments at local level (i.e.,
sub-regional, urban level), both concerning climate change and hazard assessment for
complex events, both for exposure and vulnerability analyses, alternative routes need to be
explored, including but not limited to the creation of synthetic data through statistical
approaches, dynamical downscaling and/or expert elicitation methods. The latter, in
particular, offers a unique opportunity to address recurring data gaps in multi-hazard
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assessment (e.g., probability of occurrence of coincident compound events, probability of
hazard transition in consecutive compound events and/or cascading effects scenarios),
detailed quantitative exposure and/or vulnerability analysis (e.g., recurring construction
typologies in a given area; health implication of different heat stress levels on specific age
groups) that cannot be treated otherwise for the lack of data.

● Exploration of advanced data-driven methodologies: The enormously expanding production of
data through remote sensing and research at global level, increasingly available through
public data repository and open web platforms, suggests the effectiveness of approaches
aimed at harnessing/handling information and addressing data gaps through data-driven
methodologies supported by machine learning, AI and data fusion techniques. Similarly,
consolidated statistical methods (including geospatial statistical methods) and dynamic
downscaling approaches, help to expand the application potential of available data at
global/EU level to produce quantitative impact assessments at local scale.

The specific objectives of D1.3 can be summarized as follows:
● to provide a list of possible data gaps in relation to Hazard (H), Exposure (E), and Vulnerability

(V) as key elementary bricks of the ICARIA holistic impact assessment model
● to develop a cookbook providing a list of methodologies and technical specifications for filling

data gaps in impact assessment, focusing on priorities emerging from the case studies
modelling workflows identified in D1.1

● to provide templates to map data gap-filling and uncertainty treatment, including expert
elicitation and user-provided data, in Trials and Mini-trials

● to conduct a domain survey about existing and emerging data-driven methodologies
● to provide the results of the domain survey as a form of recommendation for the practitioners.

Structure of the document
The document is organized as follows: in Section 3, the main data gaps in relation to the ICARIA
holistic modelling framework as emerged from Case Study Facilitators assessment and the results of
the domain user survey are presented. In Section 4, the main methodologies used in ICARIA to treat
data gaps and uncertainties are introduced, illustrating the “cookbook” structure and the Jupyter
book. In section 5, dedicated tables list selected literature and reference studies with respect to the
identified methodologies, including those preliminarily applied in Lab Task T1.4, for their potential
adoption in WP4 for Trials implementation. In section 6, the domain user survey, developed as a
dedicated questionnaire for experts internal or external to the ICARIA consortium, is presented. The
survey is designed to include current and emerging trends in data-driven methodologies, and the
section includes the results from the testing made by ten (10) selected experts. Finally, in the
Conclusions, a reflection on the importance of treating data gaps and uncertainties even beyond the
“gap-filling” issue, but rather in relation to the correct communication of hazard/impact modelling
results to inform decision makers and practitioners is introduced, aimed at supporting the
presentation of impact assessments and the identification of suitable resilience measures within CoP
activities in WP5. The Appendix includes the main relevant open data repositories useful to support
data-gap filling in ICARIA Trials.
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3 Recurring data gaps in impact assessment modelling

ICARIA modelling framework (see D1.1) is aimed at quantifying impact from complex events, implying
compound hazards and cascading effects conditions, with respect to multiple assets. Such
multi-hazard and multi-receptor focus increase the complexity of assessing Hazard, Exposure and
Vulnerability variables in time with the adequate spatial resolution to provide quantitative impact
assessment information to support resilient planning and decision-making. Therefore, addressing data
gaps implies their mapping across Trials and Mini-Trials, both to fill gaps and treating uncertainties,
both to acknowledge in the assessment the assumptions and limitations related to data and their
elaboration through modelling.

The templates provided in Annex (introduced in D1.1 to map for each Trial main data types expected
input from T1.2, WP2 and WP3) have been developed to map the relevant data required the implement
the hazard characterization, the exposure and vulnerability analysis and the risk/impact assessment
in Case Study and followers’ regions. They also include an “event tree scenario building tool”, adapted
from SNOWBALL project (Zuccaro et. al., 2018), intended to provide a visual representation of the
specific modelling workflow(s) adopted in the studies and useful to support data-gap filling and
uncertainties treatment (e.g., to i.e., determine hazards transition probabilities through expert
elicitation procedures).

The ICARIA cookbook and the Jupyter platform introduced in Section 5 have been developed to
provide references and technical specifications to address data gaps, including methods tested in
T1.4.

Based on the analysis from domain user survey and contributions from Case Study Facilitators
(CSFs), the main critical data gaps can be grouped in two main categories:

● Climate Change and Hazard data, which determine the boundary conditions for hazard
characterization in space and time, including aspects long term variation and seasonal trends
of climate change patterns, extreme events frequency and intensity, local downscaling of
hazards (i.e., with a spatial resolution higher than that derived by Regional Climate models
(RCMs)), probability of occurrence of coincident compound events, probability of transition
among natural hazards in consecutive compound events, probability of transition in cascading
effects from a given triggering hazard impacting critical service networks (e.g., transport,
energy, water distribution).

● Exposure, Vulnerability, and Impact data, which allow to determine expected impacts on
exposed risk receptors based on specific vulnerability and impact assessment models input
requirements. Even considering the diversity of data input required by different exposure,
vulnerability, and impact models, recurring datasets can be identified with respect to the main
hazard types.

Climate change and Hazard data
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Table 1: Climate change and Hazard data gaps’ table.

Data gap Description Data-gap filling
approach

Source

Weather/Climate
data not fully
covering spatially
the CS area
considered

Thin Plate Spline (TPS) methodology

Spatial
interpolation
techniques for
distribution of
climate
parameters

CSFs,
and
Domain
user
survey

Weather/Climate
data presents gaps
in its time series,
(i.e., lack of some
daily registers for
the variables
considered).

For each station, the observations located at
a distance of less than 20 km and with a
correlation of more than 0.7 are selected. In
case there are less than 6 observatories that
meet these requirements, the radius of
proximity will be recursively extended by 5 km
until there are 6 nearby observatories. Of the
six (6) observatories that meet the above
requirements, the three (3) with the highest
number of data between 1979 and 2020 are
selected. A multiple linear regression is
performed with the data that the observatory
to be filled and the three (3) observatories
selected above have in common. With the
parameters of the linear regression, the gaps
of the standard observatory that are empty
and whose data from the three (3) selected
observatories are complete are filled in. No
gaps are filled for a given day if any of the
three (3) observatories with which the linear
regression has been performed have no data
for that day. All the previous points are
repeated six (6) times with the objective that,
in each iteration, more and more gaps are
filled in. In the first three (3) iterations, gaps
will be filled for the whole series, while in the
last three (3) iterations, only gaps between
the years 1979 and 2020 will be filled.

"Closest-correlat
ed neighbor"
weather/climate
data gap-filling
methodology

CSFs,
and
Domain
user
survey
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Data gap Description Data-gap filling
approach

Source

Weather
observations are
too short, either
not reaching the
minimum years
required for its use
or not having data
back in time
enough for some
modelling.

For some procedures, the use of a temporally
homogeneous weather dataset is mandatory,
with data covering (without gaps) the same
extension of time. For this reason, and since
most of the weather observations are quite
recent, a temporal extension of weather data
is performed thanks to the use of a climate
reanalysis, the ERA5-Land in this case. Since
observations and reanalysis do not always
correlate perfectly (event with improved
experiments), checking and testing of
correlations are done locally between
ERA5-Land and a set of regional stations. To
further improve the reanalysis, a set of
parameters is obtained and used to correct
the reanalysis against the regional weather
signals. On the other hand, this reanalysis is
crossed with the weather observations, and
thanks to the use of several transfer
functions, the ERA5-Land, in the temporal
extension desired, is corrected to properly
reflect the true weather signal of the point,
constructing, therefore, a simulated extended
observation for the desired point. Last, this
corrected simulated observation is crossed
and filled with the original observation in
those spots available, obtaining the original
checked weather observation with gaps filled
with a corrected reanalysis up to the date
desired.

Weather data
temporal
extension
methodology

CFSs,
and
Domain
user
survey

Weather/Climate
observations are
used for statistical
downscaling
presenting
outliers, errors, or
missing data.

A two-way quality control methodology is
applied generally to all weather data sources
prior to their use.
1. Basic consistency. Direct rejection of
self-evident wrong values: for example,
negative values for precipitation.
2. Atypical values or ‘outliers’. Unusual values
within a data set: values that could come
from different sources of data or values that
could have been generated differently from
the rest of the data. In this case, the
theoretical difficulty of their recognition
depends on our definition of “atypical”. In
practice, the recognition is generally referred
to values whose absolute magnitude is
unusually high. Also conduct statistical tests

Weather/Climate
Data Quality
Control

CFSs,
and
Domain
user
survey
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Data gap Description Data-gap filling
approach

Source

(e.g., Standard Z-Score method, Modified
Z-Score coupled with decomposition, the
Exponential Moving Average with the Coupled
Modified Z-Score and decomposition)

Weather/Climate
observations used
for statistical
downscaling
presenting
changes in trends
due to
modifications of
instrumentations
or locations,
among others.

The way to proceed with the homogeneity
test that we have used is based on a method
that detects gaps inhomogeneities in daily
data (Monjo et. al., 2013):
1. To measure how similar is data belonging to
one year to data belonging to another year, it
is used a distribution comparison test based
on the Kolmogorov-Smirnov (KS) test. The KS
test is a non-parametric statistical test (it
does not presuppose distributions of the
studied variable) which provides a p-value
that can be used as a measurement of the
similarity between two years. Values that are
close to 0 show that two years have a value
distribution very similar and we can infer that
there is not an inhomogeneity between them.
The lower the value for Log (KS), the greater
the probability of inhomogeneity between two
consecutive values.
2. If one year has been selected as a possible
indicator of inhomogeneity, then it is
subjected to another test (“Similarity
between years”). Once we select the year that
possibly presents an inhomogeneity and the
following one, we figure out the p-value of
every year of the series with respect those
two years. If a jump or a break shows up
between all those p-values in the years that
we are considering, then we can infer that
there is a true inhomogeneity for all the
series.

Weather/Climate
Observations
Homogeneisation
techniques

CSFs,
and
Domain
user
survey

Hazard
downscaling at
high resolution
(<250m)

Climate change affects urban areas unevenly
depending on local conditions. Both heat and
flood extreme events' hazard intensity
magnitude can greatly vary depending on
specific local factors, such as urban
morphology, surface materials and vegetative
cover, location of critical assets and
components of service networks (e.g.,
transport, energy, water distribution). Most
hazard models adopted in ICARIA include the

Remote sensing
data can be used
as proxy of heat
/ flood hazard
(e.g., Land
Surface
Temperature as
proxy of UHI, soil
imperviousness
as proxy of flood

CSFs
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Data gap Description Data-gap filling
approach

Source

assessment of such variables to quantify
impacts at local level and support resilient
planning and decision-making. In order to
capture the effect of urban infrastructure on
hazards and potential cascading effects, a
Land Use Land Cover (LULC) database
mapping their geospatial distribution should
include information with adequate resolution
to provide hazard models with the needed
input parameters.

hazard)
Data fusion
methods
combining
multiple open
datasets

Probability of
occurrence of
coincident
compound events

The occurrence of coincident compound
hazards in a given area can be assessed
through joint probability approaches. The
analysis must be linked to historical data
related to the respective hazards to identify
possible correlations and supported by expert
elicitation. Different methods are proposed in
ICARIA (see D2.2), such as Spearman’s rank or
Pearson coefficient, to determine hazards
correlation from past events datasets
analysis. Once this step is completed, joint
probability can be assessed through
statistical methods such as copula models,
which allow to analyze the
relationship/dependence between variables,
or Monte Carlo simulations, where a large
number of scenarios based on their individual
probability distributions and correlations can
be run. The final step Analysis can then be
carried out on the frequency that both these
hazards occur simultaneously (or
sequentially) to estimate their joint
probability.

Statistical
methods (joint
probability),
supported by
open datasets
(e.g., database of
past events, such
as EM-DAT) and
expert elicitation
methods

CSFs

Probability of
occurrence of
consecutive
compound events
and/or of
cascading effects

The occurrence of consecutive compound
hazards in a given area can be assessed
through conditional probability approaches.
The analysis can be linked to historical data
related to the respective hazards to identify
possible correlations and supported by expert
elicitation. Recurring approaches include
Bayesian methods to assess conditional
probabilities of transition among consecutive
compound events and/or cascading effects,
and the use of conditional probability tables
to illustrate the relationships.

Statistical
methods
(conditional
probability),
supported by
open datasets
(e.g., database of
past events, such
as EM-DAT) and
expert elicitation
methods

CSFs
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Exposure, Vulnerability, and Impact data

Table 2: Exposure, Vulnerability, and impact data gaps' table.

Data gap Description Data-gap filling
approach

Source

Missing information
at local scale (i.e.,
urban area)

Detailed exposure and vulnerability
analyses require high-resolution
information based on specific impact
models requirements. Such information can
be integrated in a GIS platform with the
LULC database to optimize data exchange
and interoperability. Recurring data gaps by
hazard type can be summarized as follows:
Heat waves - Buildings: building envelope
(walls + windows) S/V ratio; construction
typologies; HVAC system type; Outdoor
spaces (artificial and vegetated): albedo,
emissivity, shading conditions, SVF,
evapotranspiration, surface temperature;
Population: spatial distribution; age;
income.
Floods (pluvial/coastal/river) - Buildings:
ground/underground level permeability;
Outdoor spaces (artificial and vegetated):
urban watershed relative altimetry;
proximity of run-off streams; drainage
capacity by land use; Service networks:
sewer capacity (including manholes status);
Energy network: primary/secondary cabins;
distribution network; Population: spatial
distribution; Property (structure + content):
opening ratio at ground floors; underground
floors; sidewalk / steps to enter ground
floors.
Droughts - Land cover (natural, agricultural,
urban green); vegetation inventory; local
water supply sources; resistance of plant
types.
Forest fire - Buildings: building envelope
(walls + windows); construction typologies;
Outdoor spaces (artificial and vegetated):
Land cover (natural, agricultural, urban
green); vegetation inventory; local water
supply sources; resistance of plant types;
Population: spatial distribution; age;
income.

Data
interpolation
through
statistical
methods based
on available
open data sets;
Expert
elicitation

CSFs
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4 Methodologies for data-gap filling and uncertainties treatment

Main methodologies in ICARIA Cookbook

The ICARIA Cookbook provides a series of “recipes” that include references and technical
specifications to address data-gaps and uncertainties with respect to the ICARIA Holistic modelling
framework. The main methods used in ICARIA, widely consolidated in literature, are summarized in the
following.

Statistical end dynamical methods

Climate Models (GCMs) are numerical models that represent the climate system with varying degrees
of complexity and are based on the physical, chemical and biological properties of its components,
their interactions and feedback processes. Each GCM represents all components of the earth system
(atmosphere, cryosphere, biosphere, ocean, ice-sheets), as well as human impacts via greenhouse gas
emissions and simulates possible future climate states. By representing all components, also their
interactions are depicted (e.g., melting of sea ice changes the ocean’s salinity and albedo, in turn
affecting ocean’s temperature, which then affects the atmospheric temperature). These models
provide important information; however, their spatial resolution is relatively coarse (e.g., 100 km x 100
km, meaning 1 temperature, precipitation etc. value for a grid box of 10.000km²). To address this
limitation, downscaling techniques are employed. In this sense, ICARIA has tried to tackle this
uncertainty by not sticking to one but considering the two main sources of generation of information
at the local scale available: dynamical and statistical downscaling. ICARIA has incorporated into its
procedures these two downscaling methods.

Statistical downscaling obtains empirical relationships between large-scale variables from GCMs
and high-resolution (surface) variables, allowing us to obtain very local results (like in a village) with
less error than the dynamical one. The statistical downscaling methodology applied in ICARIA by FIC,
named FICLIMA (Ribalaygua et. al., 2013), consists of a two-step analogue/regression statistical
method which has been used in national and international projects with good verification results. The
first step is common for all simulated climate variables and it is based on an analogue stratification.
For the second step, the procedures applied depend on the variable of interest, ranging from multiple
linear regression in temperature, clustering of rainfall most analogous days for precipitation, or
transfer functions between probability distributions and parametric bias corrections for wind or RH.
This methodology was applied in ICARIA for the three case studies using 10 GCMs and the 4 Tier 1
SSPs (1-2.6, 2-4.5, 3-7.0 and 5-8.5).

Dynamical downscaling, on the other hand, increases the resolution of the GCMs over the region of
interest with RCMs, taking into account local characteristics and altering physical processes, allowing
us to obtain results in areas (like watersheds) where there are no observed data as well as a better
representation of atmospheric processes. For the so-called GCM to better represent local features
such as topography or land use, the output of the general circulation models is used to drive regional
climate models (ARSINOE Project, 2023; Nikulin et. Al., 2018). Regional climate models represent
atmospheric processes at spatial resolutions of ~1 - 12 km. This so-called dynamical downscaling was
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applied within ICARIA for 2 SSP scenarios (SSP126, SSP585), using two kinds of regional climate
models (Weather Research and Forecasting Model (WRF) and Consortium for Small-scale modelling
(COSMO) for Salzburg and South Aegean region.

On the other hand, there’s the uncertainty problem about climate information. Efforts within the
scientific community focus on addressing and quantifying uncertainties in climate simulations. Within
climate projections two kinds of uncertainties are discussed, first the scenario uncertainty, and
second the model uncertainty. The first one relates to the fact that we don’t know which emission
scenario will become reality until 2100, thus the temperature evolution until the end of the century is
uncertain, but within the simulated ranges (low to high emissions). The latter represents the fact that
for the same emission scenario, two models might yield opposing trends, which is the case for
precipitation. As highly complex processes of different temporal and spatial scales are at play for
precipitation, its correct representation within climate models is still subject of research. Even though
we already know a lot, the approaches taken within two different models might cause opposing trends
of precipitation amounts until 2100. Within ICARIA, each downscaling methodology assesses its own
uncertainty with inner processes of verification through the use of different procedures and statistics,
ensuring that the methodology introduces the least amount of uncertainty into the outcomes. As a
result, both methods are then combined following the ensemble strategy, displaying the different
outcomes and impacts for future climate states. Often the medians and quantiles are applied to gain a
better knowledge and reduce uncertainty, enhancing the understanding of future climates for specific
locations.

Data-driven and data fusion methodologies

Data-driven methodologies offer an additional tool for climate resilience and especially for defining,
estimating, and treating data gaps (Harder et. al., 2022; Reichstein et. al., 2019; Andrychowicz et. al.,
2023). While it finds application in a majority of fields, the ICARIA project and D1.3, include data-driven
methods for studying data gaps for climate resilience. These methods guide us in filling data gaps in
time series forecasting at large scales, in addressing weather data, in expanding hazard datasets by
combining input from inventories (e.g., before and after an extreme event), in enhancing large-scale
quantitative hazard assessments, etc... Further, the integration of public data with asset
characteristics (e.g., buildings), helps to estimate and generate representative values for
characteristics when data gaps appear, providing key input for improving critical response strategies
and risk assessments from regional to national scales. Data-driven methodologies can play a key role
as an auxiliary tool for data-gaps treatment while additionally providing complementary information
to real-world experiments, filling geospatial data gaps about infrastructure, and expanding the output
of climate models.

Expert elicitation methods

Expert elicitation is a structured procedure for obtaining uncertainty judgments from experts,
measuring their individual judgment capabilities with a performance-based metric, and then applying
mathematical scoring rules to combine these individual judgments into a ‘rational consensus’ that can
inform the deliberations of policy-makers. One of the most widely adopted elicitation methods is the
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“classical model” formulated by Cooke (Cook et. al., 2018). The classical model has been developed to
aggregate expert judgments based on performance measures, and is based on the scoring of expert
judgment in terms of statistical accuracy and informativeness. The statistical accuracy, representing
the “calibration” of expert's opinion, is tested through a number of questions for which the answer can
be confronted with observed values and expressed by a probability index (the so called “seed
variables”, whose value is known to the analysts at the moment of the elicitation but are not known to
the experts at the moment of the elicitation). Experts are thus scored according to their performance
in assessing seed variables. A low value (near zero) expresses a high accuracy. The product of
statistical accuracy and informativeness for each expert is their combined score, expressed as
Performance Weighted (PW) combinations. Other assessment values can be derived from elicitation,
such as Equally Weighted (EW) or Harmonically Weighted (HW) combinations, as well as individual
expert assessments.

Figure 1: Simplified volcanic eruptive scenario event tree, incorporating probabilities of occurrence of
different eruptive events derived from successive expert elicitations (Mader, 2016). Probabilities of

hazard transitions are derived from expert elicitation.

The application of expert elicitation methods is particularly appropriate to determine target variables
characterized by significant level of uncertainty, which cannot be sufficiently described using current
models or field data, but for which a rational consensus among experts can be reached. Based on the
Cooke’s classical model, several expert elicitation approaches and supporting tools have been
developed, and are characterized by the following common features:

1. Scrutability: All data and processing tools are open to peer review and results must be
reproducible by competent reviewers.

2. Empirical control: Quantitative expert assessments are subjected to quality controls.
3. Neutrality: The method for evaluating expert opinions should encourage experts to state their

true opinions.
4. Fairness: Expert opinions are not judged, prior to processing the results of their assessments.
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Uncertainty treatment methods

The Climate-ADAPT uncertainty guidance (Zuccaro et. al., 2018) highlights the many levels of
uncertainties associated to climate change impacts and adaptation: Future emissions trajectories of
greenhouse gases and aerosols, which are influenced by demographic, economic, and technological
developments and international climate agreements, will determine the scale and speed of future
climate change. The impact of climate change on the environment and society will be shaped by the
future development of non-climatic factors, including socio-economic, demographic, technological,
and environmental changes. Measurement errors arise from using imperfect observational tools, such
as rain gauges, and from data processing methods, like algorithms for estimating surface
temperatures from satellite data. Aggregation errors occur due to incomplete temporal and spatial
data coverage. Natural variability is driven by unpredictable processes within the climate system,
such as atmospheric and oceanic changes, future volcanic eruptions, and dynamics within
climate-sensitive environmental and social systems, like ecosystems. Model limitations in climate and
impact models stem from their limited resolution, which affects the detailed representation of
phenomena like cloud physics, and from an incomplete understanding of individual Earth system
components, such as dynamic ice sheets, their interactions and feedbacks, like climate-carbon cycle
feedbacks, and environmental or social systems under study, such as demographic changes in
flood-prone areas or specific urban morphologies and features of building, open spaces and
vegetative cover that affect soil drainage capacities and urban heat island conditions. Lastly, societal
preferences and political priorities influence the significance placed on specific climate impacts, such
as local or regional biodiversity loss
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Figure 2: Climate resilience & Decision-making uncertainty Typology based on knowledge uncertainty,
system uncertainty, taxonomy uncertainty, and decision uncertainty (modified after Ascough II et al.,

2008).

These types of uncertainties can be connected to various areas of “Knowledge Uncertainty”,
“Variability Uncertainty” and “Decision Uncertainty”, as defined by Walker et al. (2003), which lead to
the necessity of considering uncertainty as essential component of decision-making for climate
resilience. According to Street and Nilsson (2014), recognizing and reflecting the nature and
characteristics of uncertainty in the use of evidence leads to better-informed, more relevant, and
robust decisions. By acknowledging uncertainties instead of expecting clear-cut outcomes,
uncertainties become more manageable, enabling the formulation of coherent decisions and policies.
Furthermore, the acknowledgment of uncertainties in hazard/impact assessments contribute to
minimizing the risk of maladaptation and to a more effective risk management. In particular, the focus
of ICARIA on probabilistic assessment of complex events (compound coincident, compound
consecutive, cascading effects, see D1.1), which requires articulated event tree analysis, whose
uncertainties in terms of hazard transition probabilities, and/or in terms of likelihood of cascading
effects given a certain damage threshold on critical service assets and networks1, may lead to
propagation of error in the impact assessment.
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Ensemble strategy for ICARIA climate information
In the generation of climate information for ICARIA, one of the primary challenges faced by climate
scientists and decision-makers is the inherent uncertainty in climate data (Camps-Valls et. al., 2023;
Lenton et. al., 2019). Climate Models (CMs) are numerical models that represent the climate system
with varying degrees of complexity, each simulating past and future climate states uniquely, thus
introducing a degree of uncertainty based on the selected CM. The climate system itself has inherent
variability due to the different time scales of its components (e.g., atmospheric processes occur over
days, oceanic processes over years) and their impacts on weather patterns and phenomena like ENSO
or AMO. While CMs effectively simulate broad atmospheric circulation, they lack the resolution
(around 100 km) for capturing smaller-scale local phenomena, necessitating downscaling techniques
that further add uncertainty. Additionally, the emission scenarios (SSPs) used to drive future climate
projections introduce another layer of complexity and uncertainty in interpreting and communicating
model results and their local impacts. The scientific community addresses and quantifies
uncertainties in climate simulations primarily through the ensemble strategy (Zuccaro et. al., 2018),
which involves using different models to compute the same SSP scenario. This approach displays
various outcomes and impacts for future climate states, highlighting the spread within model
simulations and enhancing the understanding of future climates for specific locations. Different
procedures (Wilcke et al. 2016) can further reduce uncertainty from ensemble outcomes, such as
selecting different ranges of change.

ICARIA tackles this uncertainty not only through the ensemble approach but also by utilizing both
dynamical and statistical downscaling methods. Each method assesses its own uncertainty through
verification processes using different procedures and statistics, ensuring minimal uncertainty is
introduced into the outcomes. By combining these two approaches, ICARIA gains a broader
perspective, assessing uncertainties and their implications for future projections. This dual-method
approach allows for a better representation of variability and possible future states while being time
efficient. Consistent results from both methodologies at the same location enhance the reliability of
ICARIA’s climate outcomes, providing trustworthy information for case studies and other partners.
Conversely, significant differences between the methodologies indicate high uncertainty in future
states, dependent on the model used. Once the results from both downscaling methodologies were
delivered in D1.2 (ICARIA, 2024a), ICARIA established its ensemble strategy for handling all climate
information produced in WP1. This strategy addresses the primary type of uncertainty inherent in the
project: the climate information itself.

The ensemble strategy used is derived from the RESCCUE (Velasco et. al., 2018) project. It goes
beyond simply using SSPs for CMIP6 by incorporating an impact approach. This approach considers
the expected changes for a variable from all potential future scenarios, thereby accounting for
uncertainties from downscaling methods, unknown socioeconomic evolutions, and the inherent
variability and divergence in climate models.

1. The first step involves analyzing projections related to main variables and hazard indicators
for impact modelling. All scenarios (combinations of GCM + SSP) from both downscaling
methodologies are considered as an ensemble, resulting in 48 total scenarios for SLZ and SAR
(40 from statistical and 8 from dynamical), and 40 for AMB (only statistical).
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2. These scenarios are ordered based on expected changes relative to the climate baseline
(1981-2020) for future climate periods.

3. An impact approach is then used to identify the “most probable scenario” (P50, or median)
and the “worst-case scenario” (P90). The scenarios in the ensemble strategy are traceable,
allowing identification of the specific scenario selected (e.g., the most-probable scenario P50
for TMax corresponds to model MPI-ESM2-1-HR and projection SSP3-7.0).

4.

By proceeding in this manner, uncertainty in the evolution of socioeconomic scenarios is accounted
for. Since it is unknown which SSP pathway humanity will follow, it is advisable not to rely on a single
SSP. Instead, all SSPs are gathered, and the appropriate one is selected. This approach allows for
flexibility, as humanity might not follow, for example, SSP 3-7.0 precisely, but another close scenario
with similar results might be more accurate at some point. The selected scenarios will then be used
for impact modelling, considering the expected evolution of changes in variables.

For compound events in ICARIA, joint probability in hazard modelling is resolved similarly. All scenarios
for each variable in the compound event are considered. The same model + SSP combination for each
variable is selected to maintain the inner dynamics of the climate model. Joint probabilities are
obtained and sorted by their probability of occurrence, ultimately selecting the median (most likely
scenario) and P90 (for uncertainty assessment).

Evaluation of uncertainty in ICARIA’s compound events approach
In ICARIA, two methods for the evaluation of the uncertainties connected to the compound events and
cascading effects timelines are suggested: (1) Bayesian methods, and (2) Expert Elicitation methods
(see also above).

Bayesian methods in uncertainty treatment
Statistics comprises two main competing schools of thought: the frequentist (or classical) approach
to statistical inference, which includes hypothesis testing and confidence intervals, and the Bayesian
approach. The fundamental difference between these approaches lies in their definitions of
probability. A frequentist sees probability as a long-run frequency. When a frequentist claims that the
probability of a fair coin landing heads is 1/2, they mean that, over many tosses, the coin will land
heads about half the time. On the other hand, a Bayesian, who would also state that the probability of
a coin landing heads is 1/2, is expressing a belief about the likelihood of the coin landing heads,
perhaps based on the symmetry of the coin suggesting no reason to favor one side over the other.
This is known as subjective probability. In practice, frequentists use probability to describe the
frequency of specific data types over repeated trials, whereas Bayesians use probability to represent
the degree of belief in a statement about unknown quantities (Glickman et al., 2007).

At the core of Bayesian analysis lies Bayes' rule. For two events, A and B, with probabilities P(A) and
P(B), respectively, the conditional probability of A given B, P(A | B), can be determined using Bayes'
rule:

P(A | B) = P(A) ∙ P(B | A) / P(B) (1)
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Bayes' rule allows us to convert a probability like P(B | A) into one like P(A | B), meaning it translates
the probability of B occurring given A has occurred into the probability of A occurring given B. In this
context, P(A) is referred to as the prior probability, P(B | A) as the likelihood, and P(B) as the
normalization factor. Bayes' rule can be straightforwardly extended to random variables and their
distribution functions. It can be utilized to combine a prior distribution with a likelihood function to
produce a posterior distribution, which can then serve as an input for risk analysis. Bayes' rule can be
expressed as:

P(θ| E) = P(θ) P(E | θ) / P(E) (2)

where P denotes probability mass (or density), θ is a value of the random variable in question (such as
the magnitude of a hazard), and E denotes the evidence considered (such as a triggering event). P(θ) is
the prior probability that the random variable takes on the value θ, and its integral over θ is one
because it is a distribution. P(E | θ) is the conditional likelihood function, representing the probability
of the evidence given a particular value of θ. Bayes' rule is applied to all values of θ to obtain P(θ | E),
the posterior distribution of θ given the evidence. Both the prior and the likelihood are functions of θ,
and Bayes' rule for distributions is essentially their product for each possible value of θ. The
normalizing factor is a single value ensuring the resulting posterior distribution integrates to unity.

For most Bayesians, the prior distribution reflects the analyst's opinions or beliefs and represents
subjective knowledge before considering specific evidence. It may stem from preconceptions,
reasoning, hearsay, or a combination. The likelihood function represents a model, often based on the
analyst's subjective knowledge, of what data suggests about the variable in question. The normalizing
factor can be difficult to compute analytically, but using conjugate pairs can simplify the problem. If
these shortcuts aren't feasible, modern software can handle the computation using intensive
methods.

In summary, a typical Bayesian analysis involves the following steps (Glickman et. Al., 2007):
1. Formulate a probability model for the data
2. Decide on a prior distribution, representing the uncertainty in the unknown model parameters

before observing the data
3. Observe the data and construct the likelihood function based on the data and the probability

model from step 1. Combine the likelihood with the prior distribution from step 2 to determine
the posterior distribution, which quantifies the uncertainty in the model parameters after
observing the data

4. Summarize key features of the posterior distribution or calculate quantities of interest based
on it. These constitute statistical outputs, such as point estimates and intervals.

The main goal of Bayesian statistical analysis is to obtain the posterior distribution of model
parameters. The posterior distribution can be seen as a weighted average of knowledge about the
parameters before data is observed (represented by the prior distribution) and the information
contained in the observed data (represented by the likelihood function). From a Bayesian perspective,
almost any inferential question can be addressed through an appropriate analysis of the posterior
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distribution. Once obtained, the posterior distribution allows for computing point and interval
estimates of parameters, prediction inference for future data, and probabilistic evaluation of
hypotheses.

Elicitation methods in uncertainty treatment

Expert judgment is sought when significant scientific uncertainty impacts the decision-making
process. Due to this uncertainty, experts may not agree. Informally soliciting expert advice is not new,
but structured expert judgment aims to apply transparent methodological rules to treat expert
judgments as scientific data in a formal decision process. The scientific method itself facilitates
expert agreement (Cook et al., 2004). A valid goal of structured elicitation is to quantify, not eliminate,
uncertainty in the decision process.

The "classical model" (Cook, 1991) used in Snowball methodology is a structured procedure for
obtaining uncertainty judgments from experts, measuring their individual judgment capabilities with a
performance-based metric, and using mathematical scoring rules to combine these judgments into a
rational consensus that informs policy deliberations. The Classical Model method employs proper
scoring rules to weight and combine expert judgments based on statistical accuracy and information
scores, measured on calibration variables (see Cooke, 1991). It operationalizes rational consensus
principles via a performance-based linear pooling or weighted averaging model. The weights are
derived from experts' calibration and information scores, measured on seed item calibration variables.
Calibration variables serve a threefold purpose (Aspinall et al., 2013):

1. to quantify experts’ performance as subjective probability assessors
2. to enable performance-optimized combinations of expert distributions
3. to evaluate and hopefully validate the combination of expert judgments

The name "Classical Model" comes from an analogy between calibration measurement and classical
statistical hypothesis testing. In the Classical Model, performance-based weights are determined
using two quantitative measures of competency: calibration and information. Calibration assesses the
statistical likelihood that a set of experimental results align with the expert's assessments, while
information measures how concentrated an expert's uncertainty distribution is.
The main steps of the Classical Model are as follows:

1. Selection of Experts: A group of experts is chosen.
2. Assessment of Seed Items: Experts express their views as elemental uncertainty

distributions and assess a set of variables (seed items) whose true values are known or will
become known later.

3. Scoring Experts' Responses: Experts' responses are scored based on the statistical
likelihood that their distributions over the seed items match the observed or measured results.
They are also scored on informativeness compared to a uniform background distribution.

4. Combining Scores: The calibration and information scores are combined to form a weight for
each expert.
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5. Elicitation of Uncertainty Judgments: Experts individually provide their uncertainty
judgments on the questions of interest (target items).

6. Weighted Pooling of Responses: Performance-based or equal weight scores are applied to
individual responses to obtain a weighted pooling of uncertainty distributions for each target
item.
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5 ICARIA cookbook: recipes for data gap filling

This chapter is dedicated to gathering a series of methodologies for data gap filling and data
uncertainty methods compiled in a cookbook. It outlines data gap groups, data requirements, data
collection templates, and sources, emphasizing the potential replicability of any of the methodologies
in case studies or during lab tests. A series of approaches are provided to address data gaps and
uncertainty, including but not limited to automated data downscaling, extrapolation, synthetic data
generation, etc. focusing on data-driven methodologies and their applicability for addressing data
gaps and uncertainty. Additionally, a domain users' survey based on ICARIA's internal and external
network is compiled, from experts with diverse backgrounds, collecting key feedback on the current
and emerging functionalities of data-driven methodologies that the experts are already using or
considered to use. The survey can be treated as a recommendation tool for the CFs, promoting
replication of ICARIA results beyond the case studies within the project.

Cookbook structure and general template in Jupyter book

A Jupyter Book1 is an open-source framework designed to serve as a generator of digital documents
and books by integrating Jupyter Notebooks and Markdown files. It enables the seamless unification
and presentation of data, code, and narrative text, making it highly suitable for interdisciplinary
research and educational purposes. For combining climate resilience methodologies with data-driven
techniques, the Jupyter Book will provide a structured environment for rendering extensive datasets,
documenting analytical workflows, and coherently delivering results, ensuring replication,
strengthening collaboration within the project, and fostering comprehensive dissemination of findings.
In ICARIA, a supporting cookbook will be developed by collecting and compiling datasets and
methodologies from the literature in a Jupyter notebook. This notebook will mirror the recipes listed in
the initial D1.3 document, creating a scaffold for a more rigid understanding of the data gaps, which
will later inform the implementation of Trials and Mini-Trials, prioritizing which gaps tend to appear,
yielding fruitful results when addressed with representative methods. More specifically the Jupyter
book will be organized as follows: each section of the D1.3 document will be systematically transferred
to the Jupyter book, with each section receiving its dedicated chapter. For Chapter 3, which
enumerates the cookbook's recipes, distinct categories—statistical methods, dynamical downscaling
methods, data-driven methodologies, expert elicitation methods, and uncertainty treatment
methods—will each be allocated a dedicated subsection containing a detailed list of recipes.
Representative information for each recipe, as presented in their designed tables, will be transferred
to the appropriate subsection. Furthermore, the domain survey data, including the questionnaire,
responses, and a summary of results, will be thoroughly documented. Finally, the chapter referring to
the reflections on data gaps and supplementary information from the appendix will be incorporated to
ensure a comprehensive and scientific presentation. The Jupyter book will be hosted in a GitHub
repository, freely accessible, allowing for continuous updates and extensions of the content, besides
easy access and modifications by the case study facilitators. The link for the Jupyter book is the
following:

1 For more information, see here: https://jupyterbook.org/en/stable/intro.html#
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https://georgiti.github.io/ICARIA-book/content/recipes/introduction/introduction.html. Finally,
an example figure of the landing page of the Jupyter book can be seen below.

Figure 3: Landing page of the ICARIA Jupyter book.

Cookbook “recipes”

The following sections contain the technical specifications and tools selected from literature,
organized and taking into account the main underlying methodology with respect to those identified
in Section 3. Although it is worth noting that the case studies implementing the suggested “recipes”
often adopt hybrid approaches, combining multiple methodologies.

Description of Recipe and Identification:

Due to the interdisciplinary character and diverse areas of application of the methodologies,
attempting a totally rigid categorization would only add additional confusion, if not, being far from
realistic. Thus, the categorization of the recipes within the cookbook was tailored to align with the
project's objectives. As a result, a straightforward yet effective way to distinguish each recipe while
providing a meaningful description was aimed. Each recipe is labeled using the following format:

Recipe - [Data gap category] [Recipe category numbered] [Secondary Category/Example] [Additional
Characterization]

An example: a recipe categorized under downscaling methodologies, listed second, focused on
statistical downscaling methods and identified as a review paper The unique label would be the
following:
Recipe CH-DD1-R, where:

● "CH" denotes Climate Charge and Hazard (or “EV” denotes Exposure and Vulnerability data),
● "01" represents the unique number,
● “DD” representing data-driven related methodologies (“S” representing Statistical

downscaling related methodologies, “D” representing Dynamical downscaling related
methodologies, “EE” representing Expert Elicitation related methodologies, “U” representing
Uncertainty related methodologies, and “HEV” representing all Hazard, Exposure, and
Vulnerability related methodologies), and

● "R" is appended to indicate it is a review paper.
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Thus, all labels in recipes within the cookbook will follow the same manner, depending on the
subsection and category they belong to.
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Statistical methods

S1. Long-term daily stream temperature record for Scotland reveals spatio-temporal patterns in
warming of rivers in the past and further warming in the future

Table 3: S1’s recipe table.

Abbrev
.

Categories and data

CH-S1

Title

Long-term daily stream temperature record for Scotland reveals
spatio-temporal patterns in warming of rivers in the past and
further warming in the future (Loerke et. al, 2023). [ Link ]

Summary

This recipe presents a rigid methodology to estimate long-term
daily stream temperature due to the scarcity of available
datasets for creating a national daily stream water temperature
dataset for Scotland.

Variables (input)

● Climatic and hydrological variables (e.g., air
temperature, etc.).

● Harmonized monitoring scheme (HMS)
dataset.

● National river flow archive (NRFA).

Methods/Models

● CNNs, GLMs, XAIs.
● CNNs to statistically downscaled max and

min temperatures over SSA (CNN-R: CNN
model with non-linear configuration).

● "CNN showed good skills to produce plausible
projections, however, differences with RAW
and GLM in the intensity of the signal were
identified when non-linearity was considered
(CNN-R)" (sic).

Results/Remarks

● Outputs: (i) Estimation of long-term daily
stream water temperature, (ii) Mean monthly
and year precipitation maps, (iii)
Environmental controls maps on studied
variables, (iv) Average base flow index maps,
(v) Forecasting of future stream water
temperature (long-term daily records, etc.), (vi)
Analysis of historical trends as coarser
temporal resolution and future changes at
high temporal resolution, (vii) Explore the role
of controls for individual catchments.

● Temperature maps allowed for identification
of the sites with the highest temperature
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Abbrev
.

Categories and data

increases, allowing for implementing thermal
moderation measures to address this issue.

Resources

● ERA-Interim analysis.
● "EC-Earth model simulations from the CMIP5 modelling

experiment" (sic).
● "Suggestion: model uncertainty and multi-GCM ensembles with

prospects to be further utilized in climate change studies over the
region" (sic).

Keywords Statistical downscaling; ML; Extreme temperature; GCMs; GLMs; CNNs.

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA

Analyze historical trends and understand the role of
environmental controls and the future changes under
regional climate projections.

S2. Regional climate model emulator based on deep learning: concept and first evaluation of a novel
hybrid downscaling approach

Table 4: S2’s recipe table.

Abbrev
.

Categories and data

CH-S2

Title
Regional climate model emulator based on deep learning:
concept and first evaluation of a novel hybrid downscaling
approach (Doury et. al, 2023). [ Link ]

Summary
This recipe offers a hybrid downscaling methodology to
extend the high-resolution RCM simulation ensembles at a
reasonable cost and identify sources of uncertainty.

Variables (input)

● Daily near-surface temperature from
EUR11-CORDEX simulations based on the
CNRM-ALADIN63 regional climate model
driven by the CNRM-CM5 global climate
model used in CMIP5.

● The historical period runs from 1951-2005.
● Scenarios (2006-2100) are based on

RCP4.5 and RCP8.5.
● 2D: (i) Geopotential, (ii) Humidity, (iii)

Temperature, (iv) Ward wind, and (v) Sea
level pressure.

● 1D: (i) Digital spatial means of 2D, (ii) Daily
spatial standard deviation of 2D, (iii) Solar
and ozone forces, and (iv) Seasonal
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Abbrev
.

Categories and data

indicators.

Methods/Models

● The RCM-emulator is based on a fully
convolutional neural network algorithm,
called UNet.

● Evaluation both on perfect model and GCM
worlds.

● Reproduces the high-resolution spatial
structure and daily variability of the RCM.

● Issues reproducing accurate simulations of
extreme events.

● Issues reproducing the complete climate
change magnitude.

● RCM's general functioning can be broken
down into two parts: a large-scale
transformation and a downscaling
function.

● A novel hybrid downscaling approach that
emulates the downscaling function of an
RCM.

● The combination of both empirical
statistical downscaling methods and RCMs
is part of the novelty of this recipe.

Results/Remarks

● Transformation from low resolution
information to the high resolution near
surface temperature.

● Aiming at the feasibility to emulate the
RCM complexity at high-frequency and
high-resolution.

● RCM-GCM inconsistencies at large scales.
● A high-resolution simulation is provided by

the emulator, corrected from the GCM-RCM
large-scale inconsistencies.

Resources

● Transformation from low resolution information to the high
resolution near surface temperature.

● Aiming at the feasibility to emulate the RCM complexity at
high-frequency and high-resolution.

● RCM-GCM inconsistencies at large scales.
● A high-resolution simulation is provided by the emulator,

corrected from the GCM-RCM large-scale inconsistencies.

Keywords Emulator; Hybrid downscaling; RCMs; Statistical downscaling; Deep
neural network; Machine Learning; EURO-CORDEX.

Tag/Type Climate Change and Hazard data.
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Abbrev
.

Categories and data

Application
in ICARIA

Potential use in
ICARIA

Emulating the downscaling function of an RCM to
improve the resolution of climate change data in
case study areas.

S3. Bayesian analysis of high-frequency water temperature time series through Markov switching
autoregressive models

Table 5: S3’s recipe table.

Abbrev
.

Categories and data

CH-S3

Title
Bayesian analysis of high-frequency water temperature time
series through Markov switching autoregressive models (Spezia
et. al., 2023). [ Link ] 2023

Summary This recipe offers a methodology based on autoregressive
models for the estimation of water temperature time series.

Variables (input)
● River temperature (along with covariates: flow,

air temperature, rainfall, wind speed and
direction, radiation, and soil temperature).

Methods/Models

● Methods (i) Bayesian interference, (ii) Markov
chain Monte Carlo (MSMC), and (iii)
Metropolis-Kuo-Mallick (MKMK) method, and
(iv) (Non-homogeneous) MSARMs (Markov
switching autoregressive models).

● MSARMs allow: (i) Discrete-time stochastic
process, (ii) Modelling non-linear and
non-normal time series by assuming that
different autoregressions, each one
depending on a hidden state, alternate
according to the Markovian regime switching,
and (iii) Classifying the observations into a
small number of homogeneous groups,
labeled as the regimes of the Markov chain.

● Observed state-dependent autoregressive
processes driven by an unobserved, or hidden,
Markov chain, Markov switching
autoregressive models.

Results/Remarks

● Methods to reconstruct high-frequency time
series.

● Bayesian model to study the dynamic
evolution of water temperature.

● MSARMs can be improved using filly Gibbs
sampling algorithms avoiding the random
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Abbrev
.

Categories and data

walk Metropolis moves.
● Data augmentation techniques can be further

applied to non-homogeneous hidden Markov
chains to extend the model.

Resources ● MSARMs_Codes

Keywords Time-series; Non-linearity; Stochastic variable selection; missing values.

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA

Assess river water temperature variation as source of
hazard of natural ecosystems.

S4. High-resolution downscaling with interpretable deep learning: Rainfall extremes over New Zealand

Table 6: S4’s recipe table.

Abbrev
.

Categories and data

CH-S4

Title
High-resolution downscaling with interpretable deep learning:
Rainfall extremes over New Zealand (Rampal et. al., 2022). [ Link
]

Summary
This methodology tests deep learning techniques against
existing statistical approaches for downscaling historical rainfall
events.

Variables (input)

● Gridded rainfall from Virtual Climate Station
Network (VSCN).

● Variables: Consecutive available potential
energy, Mean Sea level pressure, Specific
humidity, Temperature, Wind, Geopotential
height, and Precipitation.

● Time periods: (i) Training period: 1980-2012, (ii)
Validation period: 2013–2016, and (iii) Testing
period: 2017–2020.

Methods/Models

● Linear statistical models: Principal
component analysis (PCA) for geopotential
height and air temperature.

● Candidate predictor variables: Geopotential
height, air temperature, zonal wind, meridional
wind, wind speed, and geostrophic vorticity.

● Deep learning/Evaluated models: (1) CNNs: (i)
Models: Non-linear CNN Gamma, Linear CNN,
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Abbrev
.

Categories and data

Non-Linear Gamma, Linear Gamma, and Linear
dense.

● Interpretable deep learning ("explainable AI"):
(1) Grad-CAM, and (ii) Able to target the most
relevant meteorological features for
predicting extreme rainfall events.

Results/Remarks

● Simple CNNs with traditional
encoder-decoder structure provide superior
results over other more recent networks.

● The deep learning framework improves rainfall
downscaling, the largest for extreme rainfall
events.

● The best CNN model outperforms existing
statistical approaches (temporal variability
and mean and extreme rainfall).

● Maps of extreme events for the Grad-CAM+
model were provided.

● Prediction of rainfall and extreme rainfall
events (downscaling rainfall).

● The potential applicability of other types of
networks e.g., conditional generative
adversarial networks cGANs (unsupervised) is
mentioned.

● Limitations: (i) Temporal relationships in data
are not captured by CNNs, (ii) VCSN is known
to have rainfall biases when the observation
network is sparse, (iii) CNNs provide dry bias
for extreme rainfall, and (iv) Due to limitations
of input (e.g., historical data), these methods
might not capture non-stationary processes.

Resources

● The Grad-CAM interpretable deep learning code
● ERA5 analysis, C3S
● "The VCSN data is developed and maintained by NIWA and can be

obtained through a data access agreement through
correspondence with the authors" (sic)

Keywords Statistical downscaling; Deep learning; Machine learning; Precipitation
extremes; Rainfall.

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA

Hazard characterization of extreme precipitation
events.
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S5. Dasymetric Mapping of Population Using Land Cover Data in JBNERR, Puerto Rico during
1990–2010

Table 7: S5’s recipe table.

Abbrev
.

Categories and data

CH-S5

Title
Dasymetric Mapping of Population Using Land Cover Data in
JBNERR, Puerto Rico during 1990–2010 (Cartagena-Colón et. al.,
2022). [ Link ]

Summary
This recipe provides a methodology to estimate the spatial
population of an area and was proposed as a solution when
critical data are scarce.

Variables (input)
● Input: (i) Total population, (ii) Land cover

datasets (high-resolution), and (ii) Raster data
(climate parameters).

Methods/Models

● A dasymetric mapping methodology for
enhancing population spatial data by using
various geospatial sources to produce a
European Union-wide dataset of population
variations. (i) Target zone estimation, (ii)
Density estimation of ancillary class, and (iii)
Error estimation.

● The methodology combines widely available
geospatial data like CLC, Openstreet map, and
Copernicus Land Monitoring Service datasets
(European Settlement Maps) with third-party
datasets (Multinet, ToMTom datasets) and
statistical data from EUROSTAT in a novel
approach to map daytime population
dynamics.

● The approach can be used to enhance other
data more relevant to disaster response or
impact mapping.

● The proposed methodology can be a
general-use methodology for
enhancing/improving sectorial data used in
climatic scenarios.

Results/Remarks

● Output: (i) The multi-temporal population
grids for the European Union at 1 km2
resolution that have been generated during
this study have been deposited in the
European Commission’s Joint Research
Centre Data Catalog, with an identifier, and
can be accessed at ENACT-POP R2020A -
ENACT 2011 Population Grid, (ii) Dasymetric
mapping error assessment, (iii) Maps of
dasymetric population.
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Abbrev
.

Categories and data

Resources ● Uncovering temporal changes in Europe’s population density
patterns using a data fusion approach

Keywords Intelligent Dasymetric mapping (IDM); Land use; Land cover; Census Data.

Tag/Type Exposure and Vulnerability data

Application
in ICARIA

Potential use in
ICARIA

Categorizing population data with respect to land
cover information.

S6. Climate change and energy performance of European residential building stocks – A
comprehensive impact assessment using climate big data from the coordinated regional climate
downscaling experiment

Table 8: S6’s recipe table.

Abbrev
.

Categories and data

CH-EV-
S6

Title

Climate change and energy performance of European residential
building stocks – A comprehensive impact assessment using
climate big data from the coordinated regional climate
downscaling experiment (Yang et. al., 2021). [ Link ]

Summary
This recipe offers an impact assessment of climate change on
the energy performance of residential building stocks
considering different climate scenarios.

Variables (input)

● Numerical energy simulations for building
stocks.

● Gathering data using: (i) Tabula webtools, and
(ii) "EPISCOPE".

● Measure of energy performance of buildings:
Cooling and heating demands estimations.

● Future climate datasets.
● Future climate scenarios periods: 2010–2039

(near-term or NT), 2040–2069 (medium-term
or MT), and 2070–2099 (long-term or LT).

● Climate data synthesized: (i) RCA4, (ii) RCPs:
RCP 2.6, RCP 4.5, and RCP 8.5, (iii) Spatial
resolution of 12.5 km and temporal resolution
of 15 min, and (iv) GCMs: Centre National de
Recherches Météorologiques Climate Model 5
(CNRM-CM5), Irish Centre for High-End
Computing model (ICHEC-EC-EARTH), Institut
Pierre Simon Laplace model (IPSL-CM5A-MR),
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Abbrev
.

Categories and data

Met Office Hadley Centre model
(MOHC-HadGEM2-ES), and Max Planck
Institute model (MPI-ESM-LR).

Methods/Models

● Models the energy and performance in IDA
Indoor Climate and Energy (IDA ICE).

● It uses the Intergovernmental Panel on
Climate Change (IPCC) Third Assessment
Report model summary data of the HadCM3
A2 experiment ensemble which is available
from the IPCC Data Distribution Centre (IPCC
DDC).

● The tool transforms ‘present-day’ EPW
weather files into climate change EPW or
TMY2 weather files which are compatible with
most building performance simulation
programs.

● Future climate scenarios are simulated using
GCMs.

● Dynamically downscaled weather data
generated by RCMs.

Results/Remarks

● Output: (i) Annual average of heating and
cooling demand, (ii) Forecasting of weather
conditions (e.g., temperature distribution,
etc.), (iii) Forecasting of averages for heating
demands, (iv) Forecasting of averages for
cooling demands, (v) Indoor thermal comfort
based on different RCPs.

● The framework focuses on building energy
performance case studies and on solutions
for reducing energy demands.

● The vulnerability of cities to climate change
based on the indoor thermal comfort is also
considered and estimated.

● Short- and long-term climate variations and
extremes should be considered when
assessing energy demands and building
performance.

Resources ● CCWorldWeatherGen
● Climate-related risks and extreme events
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Abbrev
.

Categories and data

● Total net greenhouse gas emission trends and projections in
Europe

● Thermal comfort

Keywords Climate change; Extreme Events; Energy performance of buildings;
Thermal comfort; Assets.

Tag/Type Climate Change and Hazard data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Correlate climate change trends with variation of
seasonal energy needs. Incorporate in assets’ data
attributes the estimate of energy performance and
related cost.

S7. Comparison of stochastic and machine learning methods for multi-step ahead forecasting of
hydrological processes

Table 9: S7’s recipe table.

Abbrev
.

Categories and data

CH-S7

Title
Comparison of stochastic and machine learning methods for
multi-step ahead forecasting of hydrological processes
(Papacharalampous et. al., 2019). [ Link ]

Summary
This recipe compares stochastic and data-driven methods for
multi-step forecasting via computational experiments using
simulated time series and real-world river discharge data.

Variables (input)

● Framework for evaluating forecasting
methods in hydrology; River discharge
forecasting.

● Simulation of time series using stochastic
models.

● Mean annual river discharge time series.
● Hydrological variables at large time scales.
● Input: (i) 12,000 simulated and 92 monthly

streamflow time series, (ii) 6,000 simulated,
(iii) 135 annual temperature time series, (iv)
24,000 simulated, 185 annual temperatures,
and (v) 112 annual precipitation time series.

Methods/Models

● Comparison between stochastic and
data-driven methods for the forecasting of
hydrological processes based on large-scale
simulations.

● Time series forecasting can be classified into
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Abbrev
.

Categories and data

eight categories: (1) Exponential smoothing,
(2) ARIMA, (3) Seasonal models, (4) State
space and structural models and the Kalmar
filter, (5) Nonlinear models, (6) Long-range
dependence models, e.g., the family of
Autoregressive Fractionally Integrated Moving
Average (ARFIMA) models, (7) Autoregressive
Conditional Heteroscedastic/Generalized
Autoregressive Conditional Heteroscedastic
(ARCH/GARCH) models, and (8) Count data
forecasting.

● Simulated processes: (i) ARMA (p,q), and (ii)
ARFIMA (p.q.d).

● Real-time world series: (i) Mean annual river
discharge time series, (ii) Autocorrelation
Function (ACF), (iii) Partial Autocorrelation
Function (PACF), and (iv) Hurst–Kolmogorov
(HK).

● (a) Forecasting methods: (1) Stochastic
methods: (i) Packages: arfima, Arima,
auto_arima, BATS, ets, forecast, rwf, ses theta,
and built-in-R functions, (ii) Naive forecasting
method, and (iii) Random Walk forecasting
method. (b) Data-driven methods: (i) Random
Forest, (ii) NN, RF, SVM; package: ksvm, and
(iii) Utilization of a single hidden-layer
Multilayer Perceptron (MLP).

● Evaluation criterion for the models: (i) Type 1
accuracy: the closeness of the forecasted
time series to the target time series, (ii) Type
2: the closeness of the mean of the forecasts
to the mean of the target value.

Results/Remarks

● Stochastic generation of weather data.
● Benchmark information is available for

methodologies in this recipe.
● Heatmaps of the average-case performance

of the forecasting methods.
● In total, ML models are more likely to

outperform the stochastic methods in terms
of accuracy and computational costs,
remaining prone to their own limitations.

● Models applied for forecasting can be
transferred for studying hydrometeorological
concepts.

Resources ● R packages: Cgwtools, Devtools, EnvStats, Forecast, Fracdiff,
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Abbrev
.

Categories and data

Gdata, HKprocess, Knitr, Plyr, Readr, Rminer,Tidyr, hydroGOF.
● No free lunch theorem – Blog source.

Keywords No free lunch theorem; Random Forests; River discharge; Support Vector
Machines; Time series.

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA

Improve local climate change information through
stochastic and data-driven approaches, focused on
hydrological processes but transferable to other
relevant variables.

S8. Downscaling probabilistic seasonal climate forecasts for decision support in agriculture: A
comparison of parametric and nonparametric approach

Table 10: S8’s recipe table.

Abbrev
.

Categories and data

CH-S8

Title
Downscaling probabilistic seasonal climate forecasts for
decision support in agriculture: A comparison of parametric and
nonparametric approach (Han et. al., 2017). [ Link ]

Summary

This recipe presents two downscaling methodologies,
parametric and non-parametric, which are compared for
seasonal rainfall forecasts, and their performance for stable
simulations of the total rainfall distributions is explored.

Variables (input)

● Seasonal rainfall and its characteristics.
● Downscale scenarios: (i) Frequency-only

(π-only), (ii) rainfall amount 0nly (Rm-only), (iii)
rainfall intensity (μ-only), (iv) both rainfall
frequency and intensity（π-μ), (v) rainfall
frequency and constraining total rainfall
(Rm-μ), and (vi) rainfall intensity and
constraining total rainfall (Rm -μ).

Methods/Models

● Stochastic non-parametric temporal
downscaling method – FResampler1: (i) Based
on the concept of "conditional block
sampling", and (ii) Disaggregate SCF
(seasonal climate forecasts) to daily weather
realizations.

● Parametric downscaling method –
predictWTD; Based on conditional stochastic
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Abbrev
.

Categories and data

weather generator.

Results/Remarks

● Sensitive to data volume, sampling size, and
number of realizations (requirement for
stochastic models).

● FResampler1 performs equally well to the
parametric predictWTD method, captures
seasonality and temporal correlation
structure of data, remains sensitive to the
number of realizations and to data availability.

● The predictWTD remains sensitive to the
length of observed data, not sensitive to
number of realizations, and required longer
periods of observations for rainfall amount or
conditioning or intensity.

Resources ● IRI Net Assessment Seasonal Climate Forecast

Keywords Stochastic disaggregation; Probabilistic seasonal climate forecast;
Parametric downscaling; Non-parametric downscaling; Rainfall.

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA

Probabilistic non-parametric downscaling
methodology for seasonal climate forecasts.

S9. An R package for daily precipitation climate series reconstruction

Table 11: S9’s recipe table.

Abbrev
.

Categories and data

CH-S9

Title An R package for daily precipitation climate series
reconstruction (Serrano-Notivoli et. al., 2017). [ Link ]

Summary
This recipe offers the technical characteristics of an
open-source package written in R language for treating large
data gaps, applied to sample precipitation datasets.

Variables (input) ● Input: Daily precipitation (complete
precipitation datasets).

Methods/Models
● Treating large data gaps.
● “The observatories were located at less than

20 km and with a correlation of more than 0.7,
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Abbrev
.

Categories and data

else to meet the necessary requirements, the
radius of proximity was recursively extended
by 5km”.

● A multiple linear regression was performed
with the data all observatories had in
common.

● The gaps of the standard observatory that are
empty were filled in with data from the other
observatories.

Results/Remarks

● "Closest-correlated neighbor" weather data
gap-filling methodology".

● Data gap-filling for weather observations used
by FIC in ICARIA.

Resources
● Related projects: Junta de Andalucía SICMA Climate Change local

scenarios
● reddPrec package

Keywords reddPrec; Daily precipitation; Quality control; Missing values.

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA

Generation of complete daily weather series (no gaps)
for improved assessment of past climate in ICARIA
case study areas and development of statistical
downscaling.

S10. Description and validation of a two-step analogue/regression downscaling method

Table 12: S10’s recipe table.

Abbrev
.

Categories and data

CH-S1
0

Title Description and validation of a two-step analogue/regression
downscaling method (Ribalaygua et. al., 2013). [ Link ]

Summary

This recipe introduces a two-step analogue statistical
downscaling method for daily temperature and precipitation,
and accurately simulates the past climate on a local scale in the
studying areas.

Variables (input)
● Surface observation Data (vector data) is

combined with. ERA5-Land reanalysis
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Abbrev
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Categories and data

datasets (raster data); Low resolution data are
sourced from an observed reference dataset –
ERA40 Reanalysis (atmospheric dataset).

● 10 CMIP6 Global Climate Models + 4 Tier 1
SSP's.

● Local downscaled climate projections at point
(observation) scale.

Methods/Models

● FICLIMA two-step analogue/regression
downscaling method.

● Estimates high-resolution surface
meteorological fields for a day “x”, in two
steps: (i) The first step is an analogue
technique better adapted and improved. (ii) In
the second step, high-resolution surface
information is estimated differently for
precipitation (using a probabilistic approach)
and temperature (using multiple linear
regression).

Results/Remarks

● Problems addressed in this recipe: (i)
Changeable relationships between predictors
and predictands (including non-linear ones),
(ii) Predictors are simulated by the GCMs.

● Output: Simulation of precipitation and
temperature (spatial distribution of
verification metrics for the studied variables
(max and min temperature and precipitation).

● Advantages: (i) Low computational cost, (ii)
Microclimatic features are implicit, (iii) Good
verification results (e.g., full range of data
variability is considered).

● Limitations: (i) Historical observations of the
variables are needed, (ii) Spatial and temporal
inconsistencies cannot be eliminated, (iii)
Non-stationary problem in the
predictors-predictands relationships cannot
be excluded, and (iv) Autumn precipitation in
Mediterranean areas is poorly estimated.

Resources ● ERA40- Reanalysis

Keywords Statistical downscaling; Mean absolute error; Analogue techniques.

D1.3 – Impact modelling data requirements and methods to treat data gap filling and data uncertainty 58

http://www.ecmwf.int/research/era/do/get/era-40


DR
AF
T

Abbrev
.

Categories and data

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA

Already considered and applied for ICARIA project's
demands.

S11. Weather Data Quality Control | Weather data temporal extension methodology

Table 13: S11's recipe table.

Abbrev
.

Categories and data

CH-S11

Title

A. Weather Data Quality Control | Weather Observations
Homogeneisation Techniques.

B. Weather data temporal extension methodology |
Mainstream (traditional) gap filling methods
(Gudmundsson et. al., 2012). [ Link ]

Summary These recipes offer techniques for data-gap filling in
meteorological data.

Variables (input)

● Raw weather observations (A).
● Quality-treated weather observations (A).
● Weather data with the presence of data gaps

not covering all the time desired (B).

Methods/Models

● (A)
● A two-way quality control methodology is

applied to all weather data sources prior to
their use: (i) Basic consistency. Direct
rejection of self-evident wrong values, and (ii)
Atypical values or ‘outliers. Unusual values
within a data set.

● The way to proceed with the homogeneity
test is based on the following methodology
(see ref. in "References/Useful Links" section):
(i) To quantify the similarity between data
across different years, a distribution
comparison test based on the
Kolmogorov-Smirnov (KS) test is used, (ii) The
KS test is a non-parametric statistical test
which provides a p-value that can be used as
a measurement of the similarity between two
years., (iii) The lower the value for Log (KS),
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Abbrev
.

Categories and data

the greater the probability of inhomogeneity
between two consecutive values, (iv) If one
year has been selected as a possible
indicator of inhomogeneity, then it is
subjected to another test (“Similarity between
years”), and (v) If a jump or a break shows up
between p-values in the selected years, there
is a true inhomogeneity for all the series.

● (B)
● Depending on the circumstances the use of a

temporally homogeneous weather dataset is
mandatory.

● Temporal extension of the weather data is
performed using a climate reanalysis, the
ERA5-Land.

● Reanalysis is crossed with the weather
observations.

● Corrected simulated observation is crossed
and filled with the original observation
obtaining the original checked weather
observation with gaps filled.

● Voronoi polygons to determine the buildings
supplied by the substations: (i) Substitution:
the water distribution system layout was
missing therefore the road layout was used
instead assuming that the water network
followed its layout, (ii) Logical rule-based
reasoning: used for the burst locations
(sewers overload), and (iii) Approach based on
similar historical events previously within the
city or in other areas with similar conditions is
explored.

Results/Remarks

● Quality checking performed by FIC in ICARIA
for all the weather data gathered (A).

● Homogenization techniques performed by FIC
in ICARIA for all the weather data gathered
(A).

● Data gap-filling for weather observations used
by FIC in ICARIA (B).

Resources ● Detection of inhomogeneities in daily data: a test based on the
Kolmogorov-Smirnov goodness-of-fit test.
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.

Categories and data

● Relevant projects: RESCCUE D3.2. deliverable. Tools with updated
impact assessment models (A, B).

Keywords Weather observations; Kolmogorov-Smirnov test; Data gaps.

Tag/Type Climate Change and Hazard Data.

Application
in ICARIA

Potential use in
ICARIA

Creation and checking of extended weather
observations for improved assessment of past
climate in ICARIA case study areas and development
of statistical downscaling.

S12. A three-dimensional gap filling method for large geophysical datasets: Application to global
satellite soil moisture observations

Table 14: S12's recipe table.

Abbrev
.

Categories and data

CH-S12

Title
A three-dimensional gap filling method for large geophysical
datasets: Application to global satellite soil moisture
observations (Wang et. al., 2012). [ Link ]

Summary
This recipe presents an efficient method for handling large
spatio-temporal datasets introduced and applied to a global soil
moisture product from remote sensing images.

Variables (input)

● Works for large spatiotemporal datasets (both
spatial & temporal variability).

● Global volumetric soil moisture product
(satellite) with the Land Parameter Retrieval
Model (LRM) (2003-2009).

Methods/Models

● A penalized least square method based on
three-dimensional discrete cosine transforms
(DCT-PLS), for the purpose of filling data gaps
in large spatio-temporal datasets (for
example: soil moisture satellite data) is
introduced.

● This DCT-PLS method has some novel
features with respect to other gap-filling
methods. (i) It is a method of full
three-dimensionality, and thus (ii) explicitly
utilizes both spatial and temporal information
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.

Categories and data

of the dataset to derive the statistical model
and (iii) Predict the missing values.
Instinctively.

● This strategy is preferable for spatio-temporal
datasets rather than using only spatial or
temporal modelling.

● The method utilized both spatial and temporal
information of the moisture dataset.

Results/Remarks

● The statistical modelling process is
completely controlled by one smoothing
parameter which is easy to specify and
eliminates the need for complicated model
parameterizations.

● DCT-PLS provides estimation with small errors
for the global moisture dataset and can be
used to fill in missing values.

Resources ● BiomeCardio (Matlab package).

Keywords Remote sensing; Soil moisture; Gap filling; Penalized least square
regression; Discrete cosine transform.

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA

Improving quality of heat and flood hazard
assessment introducing soil moisture as key variable.

S13. Spatial interpolation techniques for climate data in the GAP region in Turkey

Table 15: S13's recipe table.

Abbrev
.

Categories and data

CH-EV-
S13

Title Spatial interpolation techniques for climate data in the GAP
region in Turkey (Apaydin et. al., 2004). [ Link ]

Summary

This recipe provides a benchmark for identifying the optimal
methodology for interpolating the spatial distribution of a
specified set of tested climate parameters through
geostatistical interpolation techniques.

Variables (input)
● Climate parameters: (i) Solar radiation, (ii)

Sunshine duration, (iii) Temperature, (iv)
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Categories and data

Relative humidity, and (v) Wind speed and (vi)
rainfall.

● Long-term yearly predicted temperature
maps.

Methods/Models

● Interpolation techniques: (1) Inverse distance
weighted (IDW), (2) Global polynomial
interpolation (GPI), (3) Local polynomial
interpolation (LPI), (4) Completely regularized
spline (CRI), (5) Cokriging, and (6) Kriging with
four subtypes: (i) Ordinary kriging (KO), (ii)
Simple kriging (KS), (iii) Universal kriging (KU),
and (iv) Disjunctive kriging (KD).

Results/Remarks

● Maps of long-term yearly predicted
temperature in the studied area.

● Spatial interpolation techniques are utilized
for distribution of climate parameters.

Resources N/A

Keywords Spatial interpolation; Inverse distance weighted; Polynomial interpolation;
Kriging; Cokriging; Completely regularized spline.

Tag/Type Climate Change and Hazard data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Improved mapping of local climate change hazard
conditions and of critical variables for exposure and
vulnerability assessment through geostatistical
interpolation techniques.

Dynamical downscaling

D1. A simple hybrid statistical–dynamical downscaling method for emulating regional climate models
over Western Europe. Evaluation, application, and role of added value?

Table 16: D1's recipe table.

Abbrev
.

Categories and data

CH-D1 Title
A simple hybrid statistical–dynamical downscaling method for
emulating regional climate models over Western Europe.
Evaluation, application, and role of added value? (Boé et. al.,
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2023) [ Link ]

Summary
This recipe describes an emulation methodology which is based
on a hybrid statistical-dynamical approach based on analogues
to simulate regional climate models.

Variables (input)

● Input: (i) Temperature, and (ii) Precipitation
Data.

● RCMs from Euro-CORDEX at 12km resolution.
● Scenario: RCP8.5.
● Regional simulations: (1) CNRM-CM5 GCM

from CMIP5 downscaled using three regional
simulations with the GCM/RCM mode and the
RCM/RCM mode, (2) RCM/RCM mode to
downscale from CMIP6, and (3) Historical and
ssp5-8.5 simulations from the thirteen CMIP6
models.

Methods/Models

● A hybrid statistical–dynamical downscaling
method: (i) Statistical model based on the
results of RCMs, (ii) Applied to downscale
GCMs, (iii) Aims to emulate regional climate
models, and (iv) It does not require the
stationarity assumption of statistical
downscaling.

● Emulate RCM results, based on the
constructed analogues approach.

● Estimation method based on constructed
analogues:

● Analogues of large-scale predictors from a
low-resolution climate projection are
considered: for high-resolution precipitation
(temperature), the chosen predictor is
low-resolution precipitation (temperature).

● Emulated models: (1) the GCM/RCM mode:
"Fine-Scale Ref is a high-resolution regional
climate simulation and Coarse-scale its
driving GCM" (sic), and (2) the RCM/RCM
mode: "Coarse-Scale Ref is simply the
Fine-Scale Ref simulation aggregated on the
low-resolution grid of the model to be
downscaled (Mod)" (sic).

Results/Remarks
● Novelty: the analogues are searched within an

RCM and therefore both in the past and the
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Categories and data

future climate.
● The hybrid method is shown to reproduce

climate change signals very well and to
outperform a conventional statistical
downscaling method.

● "Emulation methods make it possible to
downscale very large ensembles of global
climate projections and therefore to fully
explore the uncertainties involved in regional
climate changes" (sic).

● "In the RCM/RCM mode, the climate change
signal at large scale of the original GCM is
very well captured by the hybrid statistical
downscaling method, independently of its
magnitude" (sic).

Resources

● Euro-CORDEX regional climate projections: Earth System Grid
Federation

● Constructed analogues method links:
i. Searching for analogues, how long must we wait?
ii. Utility of daily vs. monthly large-scale climate data: an

intercomparison of two statistical downscaling methods.
iii. The utility of daily large-scale climate data in the assessment of

climate change impacts on daily streamflow in California.
iv. Hydrologic extremes – an intercomparison of multiple gridded

statistical downscaling methods.

Keywords RCMs; Hybrid statistical dynamical downscaling; Climate change;
Emulation.

Tag/Type Climate Change and Hazard data

Application
in ICARIA

Potential use in
ICARIA

Emulating the downscaling function of an RCM and
improving resolution of climate change data.

D2. Dynamical and statistical downscaling of SSPs in AMB
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Table 17: D2's recipe table.

Abbrev
.

Categories and data

CH-D2

Title Dynamical and statistical downscaling of SSPs in AMB
(ARSINOE Project). [ Link ] 2021

Summary
Dynamical and statistical downscaling methods are employed
to combine SSPs and RCPs with land use cover temporal series
data and obtain future projection scenarios.

Variables (input)

● Land use cover changes.
● Ease of change data.
● Qualitative and quantitative drivers.
● Observed land uses for each time series.
● Land use demands.

Methods/Models

● iCLUE/CLUEMONDO model for future land use
projections simulation.

● Dynamical Downscaling combining RCPs and
SSPs scenarios.

● CORINE land use cover provides land use time
series data (with satellite quality) to feed the
projection models.

● SSPs provide a framework to integrate the
future socioeconomic pathways in an RCP
environment to approach a more realistic
projection.

Results/Remarks

● Output: Future land use projections with
integrated information about the different
socioeconomic and climatic scenarios
adjusted to a more accurate downscaled
geographical case study.

● In contrast with previous methodologies, this
method provides a framework for the
integration of socioeconomic scenarios to the
simulation parameters.

Resources

● Relevant projects: ARSINOE: Huber García, V., Meyer, S., Kok, K.,
Verweij, P., & Ludwig, R. (2018). Deriving spatially explicit water
uses from land use change modelling results in four river basins
across Europe. Science of The Total Environment, 628-629,
1079-1097. https://doi.org/10.1016/j.scitotenv.2018.02.051.

● IDESCAT Population Data
● IDESCAT GDP (province and councils)
● IGN CORINE land cover (time series)
● CORINE land cover CORINE land cover (metadata)
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.

Categories and data

Keywords Socioeconomic projections (SSPs), Downscaling, RCPs, AMB, Land Use
Cover, Climatic projections.

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA

Already considered and applied for ICARIA project's
demands.

D3. Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value
for user applications

Table 18: D3's recipe table.

Abbrev
.

Categories and data

CH-D3

Title
Dynamical and statistical downscaling of seasonal temperature
forecasts in Europe: Added value for user applications
(Manzanas et. al., 2018). [ Link ]

Summary

This recipe presents an intercomparison of dynamical and
statistical downscaling methods for seasonal forecasting over
Europe, based on a 15-member hindcast from the EC-EARTH
global model, focusing on summer mean temperature

Variables (input)

● E-OBS.
● EC-earth (EUROPIAS project) - Global

seasonal predictions.
● Regional CM used: RACMO2, WRF, RegCM.
● Raster data (gridded seasonal temperatures).
● Vegetation maps (from ECOCLIMAP for

dynamical downscaling).

Methods/Models

● Dynamical downscaling: (1) RACMO2:
hydrostatic model employing 40 hybrid
coordinate full vertical levels. (2) Weather
Research and Forecasting system:
non-hydrostatic dynamic core, employing 30
full eta vertical levels, and (3) RegCM
modelling system: hydrostatic, compressible,
sigma-p, vertical coordinate model
considering 18 sigma-p levels.

● Statistical downscaling: relying on
coarse-resolution global simulated predictors:
(1) Perfect prognosis (PP), and (2) Model
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Categories and data

Output Statistics (MOS); " PP techniques can
be applied on a daily, monthly or seasonal
basis, whereas MOS techniques require
working at monthly or seasonal time-scales"
(sic).

● PP-ANA is based on the popular analogue
technique, which estimates the local
downscaled values corresponding to a
particular atmospheric configuration from the
local observations corresponding to a set of
similar (or analog) atmospheric configurations
within a historical catalog formed by
reanalysis.

● PP-MLR is an extension of simple linear
regression which attempts to model the
relationship between two or more explanatory
variables and a response variable by fitting a
linear equation to observed data. The fit is
determined by minimizing the sum of the
residuals between the regression line and the
observed data.

● Dynamical downscaling is based on regional
models, which run on a relatively fine grid
(e.g., 10–20 km) over a limited domain (e.g.,
Europe) initialized and driven at the
boundaries by the coarse global model
outputs.

● These models can generate regional
predictions for a suite of climate variables but
still may suffer from significant biases which
require post-processing with bias adjustment
techniques before they can be used in impact
applications.

Results/Remarks

● Maps of dynamical downscaling products for
representation of the mean and extreme
values.

● Statistical downscaling methods typically
show minimal biases and provide realistic
climate information (from the mean to the
extremes) when compared to global models.

● Regional information still plays a significant
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Categories and data

role in specific sector climate indices and
impact models.

● ROC Skill score was used as a measure of the
accuracy of the probabilistic forecasts,
providing maps where both dynamical and
statistical downscaling methods were
included; Both downscaling methods resulted
in similar patterns showing low-to-moderate
skill over most continent.

● Used on energy performance case studies.

Resources

● Relevant projects: (i) SPECS, and (ii) EUROPIAS
● Refinement and application of a regional atmospheric model for

climate scenario calculations of Western Europe.
● A Description of the Advanced Research WRF Version 3 –

Technical report.
● RegCM4: model description and preliminary tests over multiple

CORDEX domains.
● Comparison of dynamically and statistically downscaled seasonal

climate forecasts for the cold season over the United States.
● Regional climate modelling.

Keywords Dynamical downscaling; Statistical downscaling; Seasonal forecasting;
Multiple linear regression; Precipitation; Heatwaves.

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA

Improving resolution of climate change data, in
particular for assessing seasonal energy needs.

D4. Dynamical and statistical downscaling of a global seasonal hindcast in eastern Africa

Table 19:D4's recipe table.

Abbrev
.

Categories and data

CH-D4

Title Dynamical and statistical downscaling of a global seasonal
hindcast in eastern Africa (Nikulin et. al., 2018). [ Link ]

Summary Dynamical and statistical downscaling methods are combined to
access seasonal forecast for impact modelling.

Variables (input) ● EC-Earth
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Abbrev
.

Categories and data

● Datasets: (1) Climate research unit
time-series, (2) Global precipitation
climatology center, (3) Tropical applications of
meteorology, (4) African rainfall climatology,
(5) African estimation algorithm, (7) Climate
hazards group InfraRed precipitation stations,
and (8) WATCH-forcing-Datra-ERA-Interim.

● Regional CM used: CCLM4-8-21 (CCLM4),
RCA4 (RCA4), RegCM-4-3 (RegCM4), WRF341I
(WRF341), WRF381D (WRF381)

Methods/Models

● (1) Downscale ECMWF system-4 seasonal
hindcasts, (2) RCMs: a domain of
configurations has been selected, (3)
Empirical statistical downscaling: Two (2)
ESD methods were selected to downscale the
full stream of the EC-EARTH hindcast: (i) AN1:
variation of the Analogue technique, and (ii) A
variation of the generalized Linear Models
(GLMs), (4) Selection of the subregions was
based on a group of the initial datasets to the
LEAP platform, and (5) Rainfall indexes were
considered to evaluate seasonal forecasts: (i)
the Simple Daily Intensity Index (SDII), and (ii)
the Wet Day Frequency (WDF).

● Verification metrics: (i) Interannual correlation,
(ii) Brier skill score, and (iv) ROC Skill Score:
ROCCS maps for the EC-EARTH hindercasted
rainfall provide allow to detect observational
uncertainties.

● Dynamical Downscaling using RCMs is
computationally expensive delaying the
provision of the forecasts and requires much
more resources than ESD (e.g., saving a
wealth of driving boundary conditions from
GCMs).

● LEAP platform offers information about
humanitarian needs and interventions.

Results/Remarks
● Output: (i) Interannual correlation maps and

maps of the global and downscaled hindcasts,
(ii) ROCCS maps for the global and
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Abbrev
.

Categories and data

downscaled hindcast rainfall, (iii) Maps of
rainfall tercile forecast for each model, (iv)
Verification data for the rainfall indices (via
maps of distribution of the ROCCSS for the
global and downscaled rainfall forecasts).

● In contrast to the ESD approach, RCMs can
provide a larger number of variables in a
physically consistent way, including regional
and local feedback which can be important in
seasonal forecasting.

● Main results: (i) Observational uncertainties,
(ii) A global forecast system, (ii) Both
dynamical and statistical downscaling, (iv)
Applicability of rainfall indexes and (v) The
capabilities of an early warning system (LEAP
platform).

Resources

● Relevant projects: EUROPIAS
● downscaleR package – GitHub repository.
● Can a Regional Climate Model Improve the Ability to Forecast the

North American Monsoon?
● Dynamical downscaling of ECMWF Ensemble seasonal forecasts

over East Africa with RegCM3.
● Downscaling ECMWF seasonal precipitation forecasts in Europe

using the RCA model.

Keywords Seasonal forecast; Downscaling; Drought early-warning system; RCMs;
Precipitation; Dynamic downscaling; Generic.

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA

Already considered and applied for ICARIA project's
demands.

Data-driven based methodologies and data fusion methods

DD1. Developing novel machine-learning-based fire weather indices
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Table 20:DD1's recipe table.

Abbrev
.

Categories and data

CH-EV-
DD-1

Title Developing novel machine-learning-based fire weather indices
(Shmuel et., al., 2024). [ Link ]

Summary

This recipe introduces a data-driven fire weather index that
outperforms current traditional fire indexes (which often fall
short due to the non-linear nature of wildfire risk factors) and
provides accurate wildfire risk estimations which are key for
optimal forest management and firefighting.

Variables (input)

● Global wildfire datasets.
● Variables: (1) daily ignition, (2) 2m

temperature, (3) humidity, (4) 10m wind speed,
(5) precipitation, (6) mean slope, (7)
population density, (8) NDVI, and (9) Incoming
short-wave solar radiation.

Methods/Models

● Models would benefit if could include: (i)
including meteorological factors, (ii)
topography, (iii) fuel loads, (iv) anthropogenic
factors, (v) include 2-meter temperature, (vi)
precipitation, (vii) RH, (viii) 10-meter wind
velocity, based on the ERA5 hourly reanalysis
data, and (ix) population density.

● Fourteen (1$) indexes are used for
comparison, grouped in three (3) categories
as following: (1) Canadian Forest Service Fire
Weather Index Rating System, (2) Australian
McArthur Mark 5 Rating System, (3) U.S.
Forest Service National Fire-Danger Rating
System.

● The variables in each category include: (1a)
fire weather index, (1b) build up index, (1c)
danger index, (1d) drought code, (1e) duff
moisture code, (1f) initial fire spread index, (1g)
fine fuel moisture code, (1h) fire daily severity
rating. (2a) Keetch-Byram drought index, and
(2b) fire danger index. (3a) spread component,
(3b) energy release component, (3c) burning
index, and (3d) ignition component. These
variables were available in a 0.25◦ resolution
from the Copernicus Climate Change Service
(Fire Danger Indices Historical Data from the
Copernicus Emergency Management Service).
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Abbrev
.

Categories and data

● Metrics: (1) Under the curve metric (AUC), (2)
Operating characteristics curve (ROC), and (3)
Precision-Recall Curve.

● Classification models: (1) RF, (2) Extreme
Gradient Boosting (XGBoost), (3) MLP, a form
of Neural Network and (iv) logistic regression.

● Method to study the actors in terms of wildfire
risk: SHAP (SHapley Additive exPlanations)
values analysis.

Results/Remarks

● XGBoost model achieved the highest score
based on the ROC-AU curves.

● Traditional indices and subindices: the Duff
Moisture Code and the Keetch-Byram Drought
Index achieved the highest performance.

● ROXC curves for wildfire ignition prediction for
the ML models are provided.

● Prediction accuracy maps for all ML-based
index methods are provided, for the studied
variables.

● Maps of the two-day dependence plots for
wildfire occurrence are provided.

● Global maps of wildfire occurrence for all
ML-based index methods are provided.

● Temperature was estimated as the key feature
for the prediction of wildfire occurrences.

● ML-based FWIs are able to provide wildfire
occurrence estimation in a daily resolution in
all regions worldwide.

Resources N/A

Keywords Machine learning, fire weather indices, forest management, wildfire risk.

Tag/Type Climate Change and Hazard Data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

A methodology combining data-driven methodologies
and fire weather indices.

DD2. PVS-GEN: Systematic Approach for Universal Synthetic Data Generation Involving
Parameterization, Verification, and Segmentation
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Table 21: DD2's recipe table.

Abbrev
.

Categories and data

CH-EV-
DD-2

Title
PVS-GEN: Systematic Approach for Universal Synthetic Data
Generation Involving Parameterization, Verification, and
Segmentation (Kim et. al., 2024). [ Link ]

Summary This recipe offers a new method that parameterizes empirical
time-series data with minimal intervention.

Variables (input)

● Empirical data and synthetic data from
general-purpose time-series data of any type.

● Datasets: (i) Gas sensor array dataset, (ii)
Low-Energy house dataset, (iii) EEG
Alcoholism dataset, and (iv) Heterogeneity
activity recognition dataset.

Methods/Models

● Process: (i) Parameterization: utilize empirical
data with ACRIMA to derive automated
parameters, (ii) Verification: compare the
synthetic data with the empirical data using
our proposed metric, the possibility of
reproducibility (RoR), and (iii) Segmentation
for universal synthetic data generation:
enhance the time-series consistency and
regularity.

● Statistical models: (i) SES, (ii) ARIMA, and (iii)
GMM.

● Data-driven methods: (i) SVR, and (ii) LSTM.
Other alternatives: (i) GANs, (ii) VAEs, and (iii)
RNNs.

Results/Remarks

● Reduced user intervention and reduced
resources for acquiring and labeling large
amounts of empirical data.

● A universal methodology could benefit having
the following characteristics: (i) Automatic
generation of time-series data for a range of
sensors and data process, (ii) Parametrization
of empirical data, (iii) Independent of sensor
data traits, (iv) Encapsulation of the temporal
dynamics of time-series data, (v) Enabling
quantitative comparisons between generated
and empirical data by reflecting the
time-series characteristics of the data with
their descriptive statistics, and (vi) Scalability.

Resources N/A
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Abbrev
.

Categories and data

Keywords Time-series sensor data; synthetic data generation; time-series synthesis;
IoT data generation; possibility of reproducibility.

Tag/Type Climate Change and Hazard Data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Multi-purpose data generation system based on the
processing of empirical data and time series.

DD3. A single-building damage detection model based on multi-feature fusion: A case study in Yangbi

Table 22: DD3's recipe table.

Abbrev
.

Categories and data

EV-DD-
3

Title
A single-building damage detection model based on
multi-feature fusion: A case study in Yangbi (Du et. al., 2024). [
Link ]

Summary

This recipe offers a multi-fusion feature model for accurate
identification and classification of building damage detection to
reduce information redundancy applied to earthquake events for
demonstration.

Variables (input)

● Input: (i) Binary map of buildings, (ii) Outlines
of buildings, (iii) Satellite DOM image, (iv) UAV
DOM and DSM image, and (v) Google
Maps-based satellite images.

Methods/Models

● Data from satellites and UAVs are obtained for
damage building detection after a hazard
event (earthquake).

● An image change detection model is applied.
● Methodology: (i) nDSM: extracts building

contours, (ii) image segmentation: K-nearest
neighbor was used for classification of the
study area using spectral average grayscale
value, rectangularity features, (iii)
morphological closure operation: results of
building contour extraction, (iv) segmentation
of buildings, (vi) classification of damage
types of buildings, and (vii) texture feature
change analysis, image fusion, and PCA.

● Statistical analysis: (i) Maximum Likelihood
Classification (ML), (ii) Neural Net
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Abbrev
.

Categories and data

Classification (NN), (iii) Mahalanobis Distance
Classification (MD), and (iv) Support Vector
Machine Classification (SVM) machine
learning models were applied.

Results/Remarks

● Output: (i) Maps of damaged buildings, (ii)
Post-and pre-hazard UAV and satellite images,
(iii) Maps of extraction and distribution results
of damaged buildings

● Limitations: (i) Model should be able to
process data from diverse resources, (ii) A
larger input of damaged buildings should be
considered, and (iii) The procedure of
extraction and selection should be automated
for optimization.

Resources N/A

Keywords
Multi-feature fusion; Damage detection model; Earthquake; Normalized
Digital Surface Model (nDSM); Buildings; Structural Damage; Building
impact assessment.

Tag/Type Exposure and Vulnerability analysis.

Application
in ICARIA

Potential use in
ICARIA

Exposure and vulnerability analysis for single
buildings, with a focus on structural damage, based
on seismic impact assessment, potentially
transferable to other hazards.

DD4. Assessing automated gap imputation of regional scale groundwater level data sets with typical
gap patterns

Table 23: DD4's recipe table.

Abbrev
.

Categories and data

CH-DD
-4

Title
Assessing automated gap imputation of regional scale
groundwater level data sets with typical gap patterns (Bikše et.
al., 2023). [ Link ]

Summary

This recipe introduces and compares two data imputation
methodologies to simulate complex missing value patterns by
mimicking typical gap patterns, tested for reproducing daily
groundwater hydrographs.

Variables (input) ● Regional scale groundwater level data sets: (i)
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Abbrev
.

Categories and data

Rechange, (ii) Groundwater-surface, and (iii)
Water interaction.

● Mimicking of: (i) Typical gap patterns, and (ii)
Random gap patterns.

Methods/Models

● Linear Interpolation.
● MissForest: (i) Non-parametric, (ii) Iterative,

(iii) Missing values imputation, (iv) Random
Forest algorithm, (v) Automatic, (vi)
Unsupervised missing imputations, (vii) No
assumptions about data distribution, (viii) No
need for tuning parameters, and (ix) Performs
for the infilling daily groundwater
hydrographs.

● ImputePCA: (i) Multiple imputation method, (ii)
Principal components method on an
incomplete dataset, and (iii) Performs
iteratively principal component analysis
(PCA). Convergence: when the difference
between two successive iterations is below a
defined threshold.

● Artificial gaps: (i) Typical gap patterns: (ii)
Eleven (11) distinct groups of gaps in
groundwater hydrographs were performed,
and (ii) Artificial gaps of time series were
simulated. (ii) Random gap patterns: Artificial
gaps were introduced in 109 hydrographs.

● Imputation’s performance: I) imputePCA
performed less accurately with more
dispersed results, (ii) Typical gap patterns
were demanding for all imputation algorithms,
(iii) missForest outperformed both the
imputePCA and the linear interpolation
algorithms, and (iv) All infilled hydrographs
performed poorly when imputing typical gap
patterns.

Results/Remarks

● Impact of individual gaps: (i) All methods
performed poorly in estimating long
continuous gaps, (ii) The accuracy of the
infilling in the beginning and at the end of the
hydrographs performed poorly when
compared to the rest of the gaps.
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Abbrev
.

Categories and data

● Estimation of changes in the number of daily
hydrographs.

● Extreme hydrographs remain challenging to
address.

● Gap-filling methods fail around gaps that
contain extremes.

● Random-like gap patterns are linked with
more simple imputation methods in terms of
performance and accuracy.

● Typical gap patterns do not offer a consistent
performance on imputation, despite the gap
characteristics.

Resources ● WATERRES: EU-integrated management system of cross-border
groundwater resources and anthropogenic hazards.

Keywords Time series; Missing values; Gap filling; Droughts; Abstraction.

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA

This recipe offers alternative methodologies for data
imputation.

DD5. From theory to practice: optimization of available information for landslide hazard assessment in
Rome relying on official, fragmented data sources

Table 24: DD5's recipe table.

Abbrev
.

Categories and data

CH-DD
-5

Title
From theory to practice: optimization of available information for
landslide hazard assessment in Rome relying on official,
fragmented data sources (Esposito et. al., 2023). [ Link ]

Summary This recipe offers a landslide hazard risk management protocol
for highly urbanized areas.

Variables (input)

● List of geological hazards.
● Datasets for known landslides.
● Prediction of landslide susceptibility.
● Point-based landslide database is

represented by: (i) 1099 LIPs (289 original and
810 synthetic), and (ii) The 67 related to the
January 2014 extreme rainfalls are excluded.

● Continuous map(s) of landslide initiation
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Abbrev
.

Categories and data

susceptibility based on data-driven model(s).
● Detection rate curves for the classification of

the susceptibility.
● Spatial density maps of shallow landslides

and earth slides.

Methods/Models

● Objectives: (i) Dataset preparation, (ii)
Susceptibility assessment, and (iii)
Information about landslides.

● Evaluation of intensity and temporal
probability of landslides.

● Definition of rainfall-induced landslide hazard:
(i) Definition of the spatial component of the
landslide hazard, (ii) Temporal component of
the landslide hazard, (iii) Preliminary and
large-scale quantitative hazard description,
and (iv) Evaluation of the return periods of
landslide trigger rainfall events.

Results/Remarks

● Outputs: (i) A uniform, updated database is
composed, (ii) The spatial component of the
hazard is depicted by (a) Continuous maps of
landslide initiation, and detection rate curves,
(b) Classification of landslide susceptibility,
(iii) The temporal component of the hazard is
depicted by (a) Resulting landslide frequency
estimation, and (b) Rainfall probability curves
for the tested areas, and (iv) Persistent
scatterer interferometry: (a) A-DInSAR
velocity maps, and (b) Susceptibility hazard
index maps for the tested areas.

● GIS- and ML-based methods were applied to
collect and integrate open-source landslide
inventories into a database.

● The reported products aid decision-makers in
managing landslide risks by reporting activity
status and susceptibility, supporting informed
monitoring and investment prioritization for
prevention and mitigation.

Resources
● Known landsides
● Open access land use maps
● Hydro-geological Structure Plan
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Abbrev
.

Categories and data

● Municipal land use plan
● Civil protection plans
● IDROGEO Platform

Keywords Susceptibility; Machine learning; Rainfall probability; Landside hazards;
Landside inventories; Interferometry.

Tag/Type Climate Change and Hazard Data.

Application
in ICARIA

Potential use in
ICARIA

Landslide hazard assessment in relation to rainfall
intensity, supporting dynamic analysis of landslide
risk depending on seasonal changes in rainfall
patterns and extreme events frequency/intensity.

DD6. Modelling national residential building exposure to flooding hazards

Table 25: DD6’s recipe table.

Abbrev
.

Categories and data

EV-DD-
6

Title Modelling national residential building exposure to flooding
hazards (Paulik et. al., 2023). [ Link ]

Summary

This recipe offers a model for flood risk assessment by studying
the building characteristics for object-level replacement
evaluation in flooded areas utilizing public data, and data-driven
methodologies for the estimation of the hazard area exposure.

Variables (input)

● Variables: (i) Location (e.g., Address count and
units, etc.), (ii) Geometric and non-geometric
characteristics (e.g., Floor area, and height,
Building count, Land area, etc.).

● Integration of public data and geospatial
physical/non-physical building
characteristics.

Methods/Models

● Workflow to estimate physical and
non-physical characteristics for object-level
replacement valuation using (i) spatial data,
(ii) geometric data, and (iii) data-driven
methods.

● Geometry building properties were estimated
based on geospatial operations and open
topographic data.
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Categories and data

● Building height (BHT) extraction and level (BL)
enumeration were performed using a
geospatial model and LIDAR point clouds.

● Data-driven methods as tree-ensemble
models for value imputation (supervised
learning regression and classification
algorithms): (i) Random Forest, and (ii)
XGBOOST.

Results/Remarks

● Estimation of residential building
characteristics and replacement values.

● Output: (i) Regional residential building and
replacement value exposure, (ii) RF
demonstrates higher overall performance
compared to XGBOOST, and (iii) Object-level
information for exposure in risk assessments
can be critical at regional to national scales.

Resources
● Geospatial datasets: (i) NZ building outlines (ii) NZ primary land

parcels, (iii) LIDAR point clouds, (iv) NZ functional urban areas, (v)
RiskScape software, (vi) CostBuilder.

Keywords Floods; Residential buildings; Exposure; Monetary values; Supervised
learning; Object-level modelling.

Tag/Type Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Flood hazard exposure and vulnerability analysis of
buildings.

DD7. Deep Learning Regional Climate Model Emulators: A Comparison of Two Downscaling Training
Frameworks

Table 26: DD7's recipe table.

Abbrev
.

Categories and data

CH-DD
-7

Title
Deep Learning Regional Climate Model Emulators: A Comparison
of Two Downscaling Training Frameworks (Van Der Meer et. al.,
2023). [ Link ]

Summary

This recipe describes a methodology where it explores the
potential of using data-driven methodologies alternatively to
dynamical downscaling, applied to a global climate model (GCM)
to regional resolution.
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Categories and data

Variables (input)

● Input: (i) Precipitation, (ii) Downward radiation,
(iii) Humidity, (iv) Temperature, and (iv)
Pressure.

● RCM target domain: box of 64 x 64 pixels.
● RCM (from MAR(ACCESS1.3)), GCM(CMIP5).
● Input features to RCM: 1D (e.g., Seasonal

indicators, Spatial mead of 2D variables, etc.),
and 2D (e.g., Wind, Downward radiation,
Humidity, etc.).

● Climate variables: precipitation, temperature,
etc.…

Methods/Models

● Two Surface mass balance (SMB) emulators, a
perfect and an imperfect one, were chosen to
downscale a GCM.

● Two ML models were applied to SMB to
examine the downscaling potential: U-Net
model.

● U-Net (CBAM (Convolution block attention)
combined with depth wise-separable
convolutions (DSC)), Smart-UNet.

Results/Remarks

● Maps of SMB predictors of the RCM emulators
over a test period.

● Maps of evaluation metrics on predictions
from the RCM emulators over a test period.

● Output: (i) Perfect model fails to reproduce
SMB's extreme values, (ii) Both perfect and
imperfect models succeed in reproducing
complex spatial structure of the RCMs, and
(iii) Inconsistencies due to the difference in
resolution between large-scale and
local-scale variables are not negligible and
might confuse the RCM-emulator.

● Limitations: (i) Temporal and spatial
inconsistencies might occur if an offset is
present in the RCM time series, (ii)
Inconsistencies between RCM and GCM
variables remain present, (iii) The typical
limitations of machine learning methods are
also applicable in this context.

Resources ● ACCESS 1.3 GCM data.
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.

Categories and data

● Historical and future RCP8.5 simulations – GitHub repository.

Keywords DL; RCMs; GCMs; Downscaling; Deep Learning RCM-emulator; Dynamic
Downscaling of GCMs; Surface Mass Balance (SMB).

Tag/Type Climate Change and Hazard Data.

Application
in ICARIA

Potential use in
ICARIA

Emulating RCM downscaling to improve resolution of
climate change data in case study areas.

DD8. Self-supervised learning for climate downscaling

Table 27: DD8's recipe table.

Abbrev
.

Categories and data

CH-DD
-8

Title Self-supervised learning for climate downscaling (Singh et. al.,
2023). [ Link ]

Summary
This recipe offers a self-supervised deep-learning solution for
climate downscaling that can be applied without requiring
high-resolution ground truth data.

Variables (input)

● Low-Resolution Climate data: Synthetic LR
data can also be created by degrading real
High-Resolution data.

● Climate variables: (i) The surface temperature,
(ii) total precipitation, and (iii) topographical
gradient.

Methods/Models

● Community Earth System Model (CESM): Fully
coupled global climate model.

● Capabilities of neural networks to reconstruct
high-resolution data from given low-resolution
simulations.

● Legacy low-resolution simulations can be
downscaled to reconstruct high-resolution
detail.

● Past observations that have been taken at
lower resolutions can be increased to higher
resolutions, opening new analysis
possibilities.

● Networks: (i) Low-Frequent Data:
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.

Categories and data

Residual-Predicting Network (RPN), and (ii)
High-Frequent Data: Deconvolutional Network
(DCN).

● Downscaling is performed over the surface
temperature and the topographic gradient.

● Deep-learning methodologies: CNN method
(each model trained for 500 epochs, using
Adam optimizer and LeakyReLU).

● Characteristics: (i) Self-supervised
deep-learning solution for climate
downscaling, (ii) No high-resolution ground
data input required, (iii) CNN models train on a
single instance at a time, and (iv)
Improvement of downscaling performance.

Results/Remarks

● The method is compared to self-supervised
models (SSLSRResNet, and SSLGINE). The two SSLs
have also been used as training components
on the pseudo-LR and HR data.

● The method is capable of estimating HR
climate data without ground truth data.

Resources
● Repository for the work titled "Self-supervised learning for climate

downscaling" - GitHub repository Data for this recipe:
Ultra-high-resolution climate simulation project.

Keywords Climate downscaling; self-supervised; Deep Learning; CNNs;
Super-resolution; Earth system models; Climate Simulation.

Tag/Type Climate Change and Hazard data.

Application
in ICARIA

Potential use in
ICARIA Improving resolution of climate data.

DD9. An Exploration of Interpolation - Machine Learning Model for Climate Model Downscaling Under
the Limitation of Data Quantity

Table 28: DD9's recipe table.

Abbrev
.

Categories and data

CH-DD
-9 Title An Exploration of Interpolation - Machine Learning Model for

Climate Model Downscaling Under the Limitation of Data

D1.3 – Impact modelling data requirements and methods to treat data gap filling and data uncertainty 84

https://github.com/k-s-b/ssl_climate
https://github.com/k-s-b/ssl_climate
https://climatedata.ibs.re.kr/data/cesm-hires
https://climatedata.ibs.re.kr/data/cesm-hires


DR
AF
T

Abbrev
.

Categories and data

Quantity (Prathom et al., 2023). [ Link ]

Summary
This recipe describes a methodology to perform downscaling
and address any data-gap issues introduced, by combining
interpolation and data-driven methodologies.

Variables (input)
● LR climate data (IPSL-CM6A-LR in CMIP6 with

250 km of spatial resolution are selected as
the GCM output).

Methods/Models

● IDW (Inverse Distance Weight).
● TIN (Triangular Interpolation Network).
● ANNs (Artificial Neural Networks).
● GBRT (Gradient Boosting Regression).
● GLM (Generalized Linear Model).
● SVP (Support Vector Machine).
● HSVR (Hybrid Support Vector Regression).
● Combinations: (i) IDW-ANN, (ii) IDW-GBRT, (iii)

TIN-ANN, and (iv) TIN-GBRT.

Results/Remarks

● "The combination of IDW-ANN becomes the
proper method for downscaling the climate
model output for both temperature and
precipitation under the limitation of data
quality" (sic).

Resources N/A

Keywords Interpolation; ML; Climate model downscaling; Data gaps; GCMs; Deep
learning.

Tag/Type Climate Change Hazard data.

Application
in ICARIA

Potential use in
ICARIA

Climate model downscaling through interpolation of
existing data.

DD10. A ‘Total’ Imputation Algorithm that Fills Gaps in Time Series Measurements for ADEV and Phase
Noise Characterizations of Power-law Noise Models

Table 29: DD10's table recipe.

Abbrev
.

Categories and data

CH-EV-
DD-10 Title

A ‘Total’ Imputation Algorithm that Fills Gaps in Time Series
Measurements for ADEV and Phase Noise Characterizations of
Power-law Noise Models (Howe et. al., 2022). [ Link ]
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Abbrev
.

Categories and data

Summary

This recipe introduces an imputation algorithm for data gaps
occurring in live measurements, by extending a T-length data
run and enhancing long-term ADEV(τ) estimation, consistently
recovering gaps across various power-law noise models.

Variables (input) ● NIST H-maser time series measurements: (I)
Clock, and (ii) oscillator phase measurements.

Methods/Models

● The Total imputer is an effective method yet
devised in filling data gaps for: (i)
computations of ADEV (Allan Deviation), and
(ii) phase noise levels over the fullest possible
range of τ-values and Fourier-frequencies.

Results/Remarks

● Total imputation algorithm.
● Equally spaced time-series data without

gaps.
● Treatment of large gaps.

Resources

● Time-series-imputation package.
● Executable for Gap-filling Script for Noisy Time Series – Zenodo.
● Gap-filling Script for Noisy Time Series - Zenodo.
● Characterizing Frequency Stability Measurements Having Multiple

Data Gaps.

Keywords Time series; Noise model; Imputation Algorithm; Allan Deviation; Data
models; Large data gaps.

Tag/Type Climate Change and Hazard Data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Integration of missing modelling variables, applicable
to any kind of data gap.

DD11. A data filling methodology for time series based on CNN and (Bi)LSTM neural networks

Table 30: DD11's recipe table.

Abbrev
.

Categories and data

CH-DD
-11

Title A data filling methodology for time series based on CNN and
(Bi)LSTM neural networks (Tzoumpas et. al., 2022). [ Link ]

Summary

This recipe develops a method combining deep Learning models
such as CNNs, LSTMs, and BiLSTMs to fill data gaps in internal
temperature time series from monitored apartments, using both
pre- and post-gap data, correlated external temperature data,
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Abbrev
.

Categories and data

the method accurately reconstructs the target time series,
outperforming baseline deep-learning architectures.

Variables (input)

● Data from monitored apartments.
● Data from sensors for moisture, humidity,

temperature, C02 concentration. energy
consumption.

Methods/Models

● CNNs, LSTMs and BiLSTMs.
● CNN-LSTM (256, 128 and 64 neurons).
● CNN-BiLSTM (32, and 16 neurons).
● Use both networks in pre- and post-gap data.

Results/Remarks

● Time-series reconstruction.
● CNN-BiLSTM is the most promising model.
● CNN-BiLSTM has the best-performing

approximation of the time series.
● CNN-LSTM model performs better in

generalizing its predictions.
● CNN-BiLSTM and CNN-LSTM models show a

promising ability to generalize to unseen data.
● Both models outperform purely LSTM

networks.

Resources
● Feedforward and LSTM Neural Networks, Gap filling.
● Deep learning and time series forecasting, Review paper.
● SINFONIA Project.

Keywords Neural Networks; Data filling; Time series; Sensor data; Deep learning;
High-resolution heat wave; Hazard assessment.

Tag/Type Climate Change and Hazard Data.

Application
in ICARIA

Potential use in
ICARIA

Improvement of heat wave hazard characterization in
urban areas based on existing monitoring devices in
buildings, understanding effect of air temperature
variation and urban heat island on indoor comfort, as
a proxy of thermal capacity of building envelope and
HVAC systems efficiency.

DD12. Increasing the detail of European land use/cover data by combining heterogeneous data sets
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Table 31: DD12's recipe table.

Abbrev
.

Categories and data

EV-DD-
12

Title Increasing the detail of European land use/cover data by
combining heterogeneous data sets (Rosina et. al., 2020). [ Link ]

Summary

This recipe presents methods to improve the spatial resolution
of land cover and land use data through the combination of
different datasets available through Copernicus Land Monitoring
System.

Variables (input)

● European Settlement Map
● Corine Land Cover
● Copernicus High Resolution Layers
● Urban Atlas
● TomTom Multinet Polygons
● OpenStreetMap
● Local Sub-National Land use data

Methods/Models

● Spatial refinement based on the cartographic
synthesis of categorical raster data, interval
raster data, and vector polygon data.

● Data fusion performed using an automated
chain of raster-based map algebra operations
on a set of raw or pre-processed datasets.

● Input vector data rasterized to the target
100m resolution beforehand, using the
maximum combined area method to identify
the dominant class in each cell.

● At each step of the sequence, the cells either
remain unchanged or are updated by the
overlaid input data layer, following
pre-established decision rules.

● Random forest classification as
machine-learning technique to predict land
use classes using the derived predictor
variables.

Results/Remarks
● Urban fabric classification by use.
● Vegetation classification.

Resources ● ENACT project

Keywords Data fusion; Land use; Land cover; Machine learning; Points of interest

Tag/Type Exposure and Vulnerability data.
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Abbrev
.

Categories and data

Application
in ICARIA

Potential use in
ICARIA

Case study tailored improvement of exposure and
vulnerability information based on open datasets.

DD13. Power Network Component Vulnerability Analysis: A Machine Learning Approach

Table 32: DD13's recipe table.

Abbrev
.

Categories and data

EV-DD-
13

Title Power Network Component Vulnerability Analysis: A Machine
Learning Approach (Anand et. al., 2021). [ Link ]

Summary

This recipe suggests using data-driven methodologies on
publicly available large-scale data to gauge power network
vulnerability, elevate grid stability, minimize failure risks, and
boost resilience for smart grids.

Variables (input)

● State of components after an extreme event:
(i) non-operational (outage), (ii) operational (in
service).

● Network components: (i) power plants, (ii)
transmission lines, (iii) substations.

● Extreme hazard(s): historic disruptive events
data as input. Data sourced from the NOAA
website.

● Variables: (i) operation capacity, (ii) total
number of lines, (iii) risk factor(s), (iv)
vulnerability index, and (v) disruption
distance.

Methods/Models

● Data-driven methodologies: Supervised
learning model: Support Vector Machines
(SVMs): (i) 3216 components for training the
model, (ii) 1345 operational components under
thunderstorms winds, and (iii) 1309
operational components under tornadoes.
Kernels: (i) linear, (ii) gaussian, (iii) polynomial,
and (iv) sigmoid.

● Calculation of the vulnerability index.

Results/Remarks
● Investigation of critical components under

disruptions in a network.
● Consideration of an extreme event.
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Abbrev
.

Categories and data

● Maps of in-service or outrage components.
● Output for: (i) the evaluation of the network

stability, (ii) the understanding of the risk of
cascade failure, and (iii) the improvement of
the resilience of the overall network.

Resources N/A

Keywords Power network resilience; Vulnerability analysis; Machine learning;
Predictive analytics; Extreme events.

Tag/Type Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Enhance the predictability of resilience
methodologies for power networks.

D1.3 – Impact modelling data requirements and methods to treat data gap filling and data uncertainty 90



DR
AF
T

Expert elicitation methods

EE1. ELICIPY 1.0: A Python online tool for expert elicitation

Table 33: EE1's recipe table.

Abbrev
.

Categories and data

CH-EV-
EE-1

Title ELICIPY 1.0: A Python online tool for expert elicitation (De’
Michieli Vitturi et. al., 2024). ( Link )

Summary
Python tool to perform expert elicitation sessions through a
framework that covers both the questionnaire collection and the
analysis parts.

Variables (input)

● Expert input through webforms (question
label and extended text for in multiple
languages; units of the expected answer;
scale - uniform or logarithmic; range of
admissible values for the elicited percentiles;
question type - “seed” or “target”.

● Experts’ weight.

Methods/Models
● Cooke Classical method.
● Expected Relative Frequency method.

Results/Remarks

● Experts’ weights with different weighting
schemes.

● Itemwise graphs for seed questions (including
the text of the Itemwise graphs for target
questions (including the text of the
questions), together with a simplified
probability density function and cumulative
distribution plots of the DM.

● Percentiles of target questions.
● Optional graphs where multiple target

questions could be visualized along with their
percentiles.

● Probability density functions and barplots for
target questions, along with the percentile
values for the used weighting schemes.

Resources ● ELICIPY 1.0 GitHub
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Abbrev
.

Categories and data

Keywords Expert elicitation; Uncertainty quantification.

Tag/Type Climate Change and Hazard data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Assess probability of compound events and
cascading effects in selected case studies scenarios;
Assess variables related to exposure and vulnerability
analyses for specific single-hazards.

EE2. Using expert elicitation to strengthen future regional climate information for climate services

Table 34: EE2's recipe table.

Abbrev
.

Categories and data

CH-EE-
2

Title Using expert elicitation to strengthen future regional climate
information for climate services (Grainger et. al., 2022). [ Link ]

Summary
This recipe explores the use of structured expert elicitation to
access uncertainties for future climate changes as an extension
to the results of climate model simulations.

Variables (input)

● Input: (i) Temperature, and (ii) Precipitation.
● CMIP5 analysis: (i) Historical data from

1975-2005, (ii) Calculated periods: 2040s and
2080s, and (iii) RCPs: RCP2.6, 4.5, 6.0 and 8.5.

Methods/Models

● Climate model outputs from CMIP5.
● Structured expert elucidation:

o Use of structured expert elicitation
(SEE) for regional climate change.

o Expert elicitation judgment
(individually or in a group): (a)
Provides additional information and
knowledge that is absent from
modelling approaches, and (b) Builds
a framework for discussion between
climate experts and regional
stakeholders.

o Snowball sampling is considered.
o Estimates of future temperature and

precipitation change are provided.
o Sources of uncertainty in estimating
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Abbrev
.

Categories and data

long-term climate changes: rank
sources based on their overall
contribution.

● Considering all possible GHG concentration
scenarios

Results/Remarks

● Narrower uncertainty ranges for deviations in
both temperature and precipitation.

● Framework for supporting adaptation
decisions.

● "Practices are shaped by local epistemic,
institutional and political cultures" (sic).

● "SEE used alongside modelling approaches,
can contribute to a richer understanding of
regional climate knowledge for use in climate
services" (sic)

● "Elicitation methods should be considered
within the ‘toolbox’ of approaches available to
climate service providers" (sic)

Resources N/A

Keywords Knowledge quality assessment; Climate change adaptation; Yangtze;
China; Assessing Climate Uncertainties; Expert elicitation.

Tag/Type Climate Change and Hazard Data.

Application
in ICARIA

Potential use in
ICARIA

Adapt the methodology to assess probability of
compound events and cascading effects in selected
case studies scenarios.

EE3. Expert Elicitation: Using the Classical Model to Validate Experts’ Judgments

Table 35: EE3's recipe table.

Abbrev
.

Categories and data

CH-EV-
3-R

Title Expert Elicitation: Using the Classical Model to Validate Experts’
Judgments (Colson et. al., 2018) ( Link )

Summary

Review of thirty-three professionally contracted classical model
studies that were performed between 2007 and March 2015
using the EXCALIBUR software package for structured expert
judgement elicitation using Cooke’s Classical Model.
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Abbrev
.

Categories and data

Variables (input) ● Expert input and weighting through the
EXCALIBUR tool.

Methods/Models ● Cooke Classical model

Results/Remarks
● Scoring of individual variables
● Scoring of average probabilities

Resources
● EXCALIBUR Windows Tool
● EXCALIBUR Python Tool

Keywords Expert elicitation; Uncertainty quantification.

Tag/Type Climate Change and Hazard data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Assess probability of compound events and
cascading effects in selected case studies scenarios;
Assess variables related to exposure and vulnerability
analyses for specific single-hazards.

Uncertainty treatment methods

U1. How Certain is Good Enough? Managing Data Quality and Uncertainty in Ordinal Citizen Science
Data Sets for Evidence-Based Policies on Fresh Water

Table 36: U1's recipe table.

Abbrev
.

Categories and data

EV-U-1

Title

How Certain is Good Enough? Managing Data Quality and
Uncertainty in Ordinal Citizen Science Data Sets for
Evidence-Based Policies on Fresh Water (Stankiewicz et. al.,
2023). [ Link ]

Summary
This recipe focuses on the collection of data sets for water
quality involving the active contribution of citizens, offering an
additional way to study and treat data gaps and uncertainties.

Variables (input)

● Input: (i) Temperature, (ii) Oxygen parameters,
(iii) Turbidity, and (iv) pH.

● Indicators concerning: (i) Aquatic plants, (ii)
Water flow, (iii) Water depth, and (iv) Riverbank
characteristics.
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Abbrev
.

Categories and data

Methods/Models

● Water Blitz events: instructions combined
with a sampling kit.

● Measuring the nitrate-nitrogen and
phosphate-phosphorus concentration as
collected from the field kits.

● Coordinated measurements via GPS.

Results/Remarks

● Citizen science contributes to monitoring
activities.

● Development of resilient ways to interact with
the aquatic ecosystems.

● Contribution to awareness and reflection.
● Addresses an uncertainty in a sustainable

government.
● Limitations: (i) Role of the citizen science in

the community, (ii) Individual characteristics
of water systems and parameters, and (iii)
Public access to environmental data from
government(s).

Resources N/A

Keywords Social-ecological systems; Water quality, Monitoring; Uncertainty.

Tag/Type Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Uncertainty treatment methodology for trials and
mini-trials.

U2. Where does scientific uncertainty come from, and from whom? Mapping perspectives of natural
hazards science advice

Table 37: U2's recipe table.

Abbrev
.

Categories and data

CH-RV-
U-2

Title
Where does scientific uncertainty come from, and from whom?
Mapping perspectives of natural hazards science advice (Doyle
et. al., 2023). [ Link ]

Summary
This recipe focuses on identifying sources of uncertainty
associated with natural hazards using mental model mapping
and a semi-structured interview protocol.
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Abbrev
.

Categories and data

Variables (input)

● The area of study was exposed frequently to
a wide variety of natural hazards.

● A range of participants was recruited using
the snowball approach.

● In total twenty-five (25) participants ranged
from twenty-five (25) to seventy-five (75)
years old.

Methods/Models

● Aims: (i) Understand what a disaster risk is, (ii)
Integrate technology in decision-making
about risk, and (iii) Find disaster risk
communication methodologies.

● A three-face interview was constructed "to
understand individual's perceptions of
uncertainty associated with natural hazards"
+ brainstorming + indirect elicitation
questions.

o A systematic review of mental model
interview approaches.

o Conceptual cognitive concept
mapping (3CM).

● Mental models approach:
o Key concepts: (i) Uncertainty, (ii)

Knowledge, and (iii) Science.
o Sources of uncertainty: (i) The

scientists, (ii) The media, (iii) The
communicators, (iv) The range of
possible outcomes, (v) Human
responses, and (vi) The unknown
unknowns.

Results/Remarks

● Individual's mental models to identify sources
of uncertainty: (i) Actors, and (ii) Known
unknowns.

● Translate uncertainty in a meaningful way for
the people (the public).

● Creation of science-policy interfaces for
effective decision-making frameworks in
disaster management crisis.

● Key influences for uncertainty: (i) Governance
and funding, (ii) Societal factors, (iii)
Outcomes, (iv) Emotions, (v) The
communication landscape, and (vi)
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Abbrev
.

Categories and data

Decision-making.

Resources

● National Emergency Management Agency's National Disaster
Resilience Strategy.

● Resilience to Nature's Challenge is one of Aotearoa New Zealand's
National Science Challenges.

● QuakeCoRE is the NZ Centre of Research Excellence for
Earthquake Resilience

Keywords Uncertainty; Mental models; Natural hazards; Societal and economic
factors.

Tag/Type Climate Change and Hazard Data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Communicating uncertainties associated with
complex events hazard/impact scenario assessment
to decision makers.

U3. A review of uncertainty quantification in deep learning: Techniques, applications and challenges

Table 38: U3’s recipe table.

Abbrev
.

Categories and data

CH-U-
3-R

Title
A review of uncertainty quantification in deep learning:
Techniques, applications and challenges (Abdar et. al., 2021). [
Link ).

Summary

This recipe presents the application of Bayesian and ensemble
techniques in various domains discussing the recent
advancements in uncertainty methods within deep learning for
optimization and decision-making processes.

Variables (input) ● N/A

Methods/Models

● Quantification methods:

▪ Bayesian techniques: (i)

Monte Carlo (MC) dropout, (ii)
Markov chain Monte Carlo
(MCMC), (iii) Variational
inference (VI), (iv) Bayesian
Active Learning (BAL), (v)
Bayes by Backprop (BBB), (vi)
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Abbrev
.

Categories and data

Variational autoencoders, (vii)
Laplacian approximations, and
(viii) Uncertainty
quantification in
reinforcement learning.

▪ Ensemble techniques: (i) Deep

NNs (DNNs), (ii) Deep
ensemble Bayesian/Bayesian
deep ensemble, and (iii)
Uncertainty in Dirichlet deep
networks.

▪ Uncertainties: (i) Two main

types of uncertainty: (a)
epistemic (model uncertainty)
and (b) aleatoric (data
uncertainty). (ii) Three (3)
uncertainly models were
considered: (1) the MC
dropout, (2) the Bootstrap
model, and (3) the GMM
model.

● Others:
o Neural Architecture Distribution

Search (NADs).
o Single model estimates for DNNs of

epistemic and aleatoric uncertainty.
o Method to find and reject distribution

data points for training a
deterministic deep model with a
single forward pass at test time.

o MC-DropConnect.
o Gradient-based optimization

techniques.
o Noise contrastive priors (NCPs) to

estimate consistent uncertainty.
o Uncertainty-based class imbalance

learning.
o Variational approximation, termed

Bayes by hypernet. (BbH), deducting
hypernetworks as implicit
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Abbrev
.

Categories and data

distributions.
o I Do not Know (IDK) prediction

cascade approach.
o Models inspired by the nonlinear

differential equations utilized by
physics-informed neural networks.

o ProbDepthNet.
o DNNs trained with mix-up.
o Local interpretable model-agnostic

explanations (LIME).
o Randomized approach sampling from

the hidden layers. during the DNN
interference period.

o Certainty-driven consistency loss
(CCL) method.

o Modified knowledge distillation
method.

o Models based on kernel techniques.
o Stochastic quantized activation

distributions (SQUAD).
o Probabilistic DL method (approximate

Bayesian inference + heteroscedastic
noise technique).

o Gaussian Processes (GP).
o Stochastic, low-rank, approximate

natural gradient (SLANG) technique.
o Dubbed prior networks (PNs).
o DVERGE.
o Direct epistemic uncertainty

prediction (DEUP).
o Subjective Bayesian GNN (S-BGNN).
o Doubly stochastic variational neural

process (DSVNP).
o Non-Bayesian NN models.
o Uncertainty-aware deep Dirichlet

neural networks.
o Deep Gaussian processes (DGPs): (i)

In combination with stochastic weight
averaging (SWA), (ii) SWA-Gaussian,
(iii) GPDNNs: a hybrid model of GP and
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Abbrev
.

Categories and data

DNNs, (iv) GPs + YOLOv3, (v) A natural
gradient-based algorithm for
Gaussian mean-field, (vi) Matrix
variate Gaussian (MVG), and (vii)
Introduction of a variety of stochastic
layers.

o A variety of other techniques uniquely
specified and tailored for desired
applications are listed within the last
subsections of the paper.

Results/Remarks

● Gaps and methods to approach them: (1)
Fusion-based methods, (2) Ensemble
methods, (3) Decision making, (4) Active
learning, (5) Transfer learning, (6) Neural
architecture search (NAS) methods, (7)
Self-supervised learning (SSL) methods, (8)
Hypernetworks, (9) Continual learning, (10)
GNNs: Graph Neural Networks, (11) BO: global
optimization method for optimizing
time-consuming black-box objective
functions, and (12) Uncertainty calibration.

Resources N/A

Keywords Uncertainty quantification; Deep learning; Machine learning; Bayesian
statistics; Ensemble learning; Review article.

Tag/Type Climate Change and Hazard Data.

Application
in ICARIA

Potential use in
ICARIA

Uncertainty quantification in propagation of damage
following consecutive compound events and/or
cascading effects (Climate Change and Hazard data).

U4. SHELF: The Sheffield Elicitation Framework

Table 39: U4's recipe table.

Abbrev
.

Categories and data

CH-EV-
4

Title SHELF: The Sheffield Elicitation Framework (Gosling et. al.,
2018). ( Link )

Summary R-based package of documents, templates and software to
carry out elicitation of probability distributions for uncertain
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Abbrev
.

Categories and data

quantities from a group of experts.

Variables (input)
● Expert input and weighting through the

SHELF package of documents, templates and
software.

Methods/Models

● Single expert
● Multiple experts
● Bivariate elicitation
● Dirichlet elicitation
● Extension method (continuous)
● Extension method (discrete)

Results/Remarks
● Probability distribution with respect to

elicited variables.
● Multiple visual, graph and table formats.

Resources ● SHELF Tool

Keywords Expert elicitation; Uncertainty quantification.

Tag/Type Climate Change and Hazard data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Assess probability of compound events and
cascading effects in selected case studies scenarios;
Assess variables related to exposure and vulnerability
analyses for specific single-hazards.

U5. Combining Quantitative and Qualitative Measures of Uncertainty in Model-Based Environmental
Assessment: The NUSAP System

Table 40: U5's recipe table.

Abbrev
.

Categories and data

EV-U-5

Title
Combining Quantitative and Qualitative Measures of Uncertainty
in Model-Based Environmental Assessment: The NUSAP System
(Van Der Sluijs et. al., 2005). [ Link ]

Summary

This recipe showcases the applicability of a system designed to
combine quantitative and qualitative uncertainty measures,
demonstrating its effectiveness for accessing both parameter
uncertainty and model assumptions.

Variables (input) ● Data from environmental policy issues, for
example, emissions of acidifying gases (NOx,
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Abbrev
.

Categories and data

SO2, and NH3).

Methods/Models

● Treatment of multidimensional uncertainty
assessment with increasing complexity.

● Emission monitoring systems, complex
energy models, and environmental indicators
are used.

● NUSAP is applied to complex models in a
meaningful way.

● Ability to serve as a diagnostic tool for
assessing the robustness of a given
knowledge base for policy-making.

Results/Remarks

● Numeral Unit Spread Assessment Pedigree
(NUSAP) system for multidimensional
uncertainty assessment.

● Potentially applicable for ICARIA use
cases/trials, etc...

● A tool for prioritizing uncertainties
qualitatively and quantitatively.

Resources ● A framework to assess quality and uncertainty in disaster loss
data

Keywords Uncertainty; Controversy; Value-laden assumptions; Problem frames;
Diagnostic analysis.

Tag/Type Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Uncertainty treatment methodology for trials and
mini-trials.

Other methodologies related to hazard, exposure, and vulnerability

HEV1. Urban pluvial flood modelling in the absence of sewer drainage network data: A physics-based
approach
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Table 41: HEV1’s recipe table.

Abbrev
.

Categories and data

CH-EV-
HEV-1

Title
Urban pluvial flood modelling in the absence of sewer drainage
network data: A physics-based approach (Montalvo et. al., 2024).
[ Link ]

Summary

This recipe focuses on a physics-based method for assessing
urban pluvial floods using a virtual sewer network generation
tool when sewer network data is scarce. Comparing results from
four storm events, the method effectively, and accurately
represented drainage capacity and accounting for sewer
overflows, confirming its robustness for urban flood modelling.

Variables (input)

● Information from a virtual sewer network.
● Information from 1D/2D models using the

actual sewer network.
● Stormwater flow (synthetic design storm

parameters).
● Wastewater flow (based on the population

density, land registry, and daily per capita
water capacity).

● Number of rainfall events.
● Network elements: manholes, outfalls, and

conduits.

Methods/Models

● Physics-based assessment of urban pluvial
floods.

● 1D/2D hydrodynamic dual drainage model
Iber-SWMM.

● 2D dynamic sewer mode: the Soil
Conservation Service Curve Number was
used.

● 1D dynamic sewer model: (i) EPA SWMM
(Storm Water Management Model), and (ii)
Allows retrieval of hydraulic variables.

● Creation of a representative virtual sewer
network: Virtual sewer network generation
and dimensioning tool: (i) Defines realistic
network topology, (ii) Manholes are located
where streets intersect with each other, and
(iii) Manhole invert elevations are calculated.

● Scenarios: (i) 1D/2D dual model using the
actual network, (ii) 2D overflow model without
sewer network, (iii) 2D overflow model with
rainfall reduction for sewer network
representation, (iv) 1D/2D dual model using a
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Abbrev
.

Categories and data

virtual sewer network, and (v) 2D overflow
model using a virtual inlet layout.

Results/Remarks

● Estimates accurately the sewer’s networks
drainage capacity (SNDC). during pluvial
floods.

● Soil Conservation Service Curve Number
maps are created.

● Virtual and real sewer network maps are
provided.

● Numerical simulated maximum inundation
extent maps for all five (5) scenarios are
provided.

● Scenarios with the actual network and
without the sewer network indicate the
importance of the SNDC.

● Scenario using the rainfall induction method
are not efficient.

● The virtual sewer scenario resulted in the
most effective estimations in the absence of
any sewer network information.

● The SNDC of the virtual network is more
extended when compared to the actual
network.

● Evaluation through satellite images might
contribute to a optimal performance of the
proposed method in this recipe.

Resources

● Meteorological data from the MeteoGalicia agency..
● Observed sea level data from the Spanish Port system..
● Digital elevation model from the Spanish Ministry for Ecological,

Transition and Demographic Challenges..
● Land Registry, soil use, and population information from the

Spanish General Directiorate of the Land Registry.
● The Street network layout from OpenStreetMap geodatabase.
● The LiDAR-derive digital elevation model, observed water

elevation data form the gause station, and the sewer network
layout from the regional water administration Augas de Galicia.

Keywords Urban pluvial flooding, Dual models, Iber, SWMM, Data scarcity.

Tag/Type Climate Change and Hazard Data; Exposure and Vulnerability data.
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Abbrev
.

Categories and data

Application
in ICARIA

Potential use in
ICARIA

A potential methodology for the creation of a virtual
network might be useful for the lab tests in ICARIA
project.

HEV2. Storm damage beyond wind speed – Impacts of wind characteristics and other meteorological
factors on tree fall along railway lines

Table 42: HEV2's recipe table.

Abbrev
.

Categories and data

CH-EV-
HEV-2

Title
Storm damage beyond wind speed – Impacts of wind
characteristics and other meteorological factors on tree fall
along railway lines (Lorenz et. al., 2024). [ Link ]

Summary

This recipe examines the tree fall risk during hazard events,
emphasizing the role of meteorological factors and conditions
that influence tree falls, supporting the addition of local
climatological conditions for improved risk assessment.

Variables (input)

● Parameters: (i) Wind speeds, precipitation, soil
water volume, air density, and the
precipitation sum of the previous year
increase tree fall risk, and snow.

● Datasets: (i) Deutsche Bahn (2017-2021) and
meteorological data from ERA5 reanalysis
and RADOLAN radar, (ii) Tree fall events along
the German railway network were derived from
a data set created by the Deutsche Bahn, (iii)
It contains 15311 tree fall events between 2017
and 2021, (iv) The dataset ranging from 2017
to 2021 covering the whole country and
including long-term and large-scale storm
damage contributes to the novelty of the
recipe, (v) Hourly ERA5 data for all
meteorological parameters except
precipitation accessed using the ClimXtreme
Central Evaluation System and (vi) Rail
density index.

Methods/Models
● -A logistic regression model predicts the risk

of a tree falling on a railway line in a 31 km
grid cell.
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Abbrev
.

Categories and data

● The analysis considered only the extended
winter season, focusing on winter windstorms,
which cause the most extreme peaks in tree
fall events.

● Meteorological predictors like precipitation or
soil moisture are considered less often: (i)
Predictors describing precipitation and soil
conditions at different time scales are also
considered, (ii) Wind load can be considered
as a model predictor, and (iii) Interactions can
reveal the combined effect of predictors and
their interconnection.

● Storm duration, gust factor, and air density
are important factors in calculating the risk of
tree fall.

● Inclusion of antecedent weather situations;
Index: The Standardized
Precipitation-Evapotranspiration Index (SPEI),
which has been used in recent research on
forest disturbance.

● Snow and soil frost: (i) Potentially influential
variables, and (ii) Derived from ERA5, which
tends to overestimate snow water equivalent
in the Northern Hemisphere.

● Limitations: (i) The events might be related to
meteorological events not resolved by the
ERA5 analysis, (ii) The wind speeds caused by
heavy thunderstorms are likely to be
underestimated, and (iii) Data with higher
spatial resolution that include convective
effects were not included (helpful in
understanding the effects of the phenomena).

Results/Remarks

● Duration of strong winds is important because
trees do not fail instantly but fail with
repeated swaying that fractures the root/soil
system and this process can take many
hours.

● Future modelling might benefit from the
addition of local tree wind exposure.

● High and prolonged wind speeds, especially in
combination with wet conditions (high
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Abbrev
.

Categories and data

precipitation and high soil moisture) and a
high air density, increase the risk of tree fall.

● Predictors for daily precipitation, daily soil
water volume, and daily maximum gust speed
might improve the model's skill.

● Previous trees fall and forest storm damage
events are restricted to a single event or a
small research region.

● Wind-related parameters (e.g., gust factor,
duration of strong wind speeds, air density,
etc.) and predictors related to meteorology,
have a significant impact on tree fall risk.

● Taking tree adaptation to the environment
should be considered.

● Models that can add trees, soil, or stand data
or have access to higher spatial resolution
meteorological data will likely produce better
model skills and be able to examine the
relationships between tree fall and
meteorology in more detail.

Resources N/A

Keywords Windstorm; Railway system; Trees; Logistic regression model; Gust speed;
Meteorological parameters.

Tag/Type Climate Change and Hazard Data; Exposure and Vulnerability Data.

Application
in ICARIA

Potential use in
ICARIA

Improved assessment of windstorm impact on trees,
support to vulnerability analysis of trees under
extreme winds, potentially correlated to cascading
impacts on transport and energy networks.

HEV3. OpenStreetMap for multi-faceted climate risk assessments

Table 43: HEV3's recipe table.

Abbrev
.

Categories and data

CH-EV-
HEV-3

Title OpenStreetMap for multi-faceted climate risk assessments
(Mühlhofer et. al., 2024). [ Link ]

Summary This recipe presents specific approaches to exploit OSM data
and tools for informing hazard/impact assessments.
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Abbrev
.

Categories and data

Variables (input)

● OpenStreetmap data, and automation:
Geofabrik.

● Automatic pipeline with CLIMADA.
● Variables: (i) Wind: for forests, wind intensities

above 38.9 m/s were considered more
adequate to capture tree snapping, (ii)
Nightlight intensity and population (count at
30 arcsecond resolution with LitPop), and (iii)
A population exposure at the same resolution
based on the SEDAC GPW v4.0 dataset.

● Exposure data for heritage sites, forests, etc...

Methods/Models

● Retrieval of geospatial exposure data from
OSM.

● Features can be extracted from OSM and
converted into geographical tabular format: (i)
By reading data directly from the Overpass
API, (ii) By downloading regional data dumps
as protocol buffer binary format files.

● Technical details: (i) Python-based (tabular
formats, geopandas, etc.), (ii) Efficiently
parses large sets of OSM data based on
user-specified queries from PBF data dumps
within arbitrary and fully user-defined
geographical boundaries, and (iii)
Computational efficiency and user flexibility
required to perform multi-faceted risk
analyses.

● Integration within the natural hazard risk
assessment platform CLIMADA and perform
end-to-end assessments.

● OSM with CLIMADA: (i) Compute risk
according to the IPCC risk definition as the
product of hazard, exposure, and vulnerability,
(ii) CLIMADA's engine is designed only for
pointwise data, thus data must be
interpolated to points before impact
calculations, and (iii) Dedicated hazard and
vulnerability data can be provided in the
CLIMADA data API.

● Risk management strategies, opening the
potential for non-conventional exposure data.
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Abbrev
.

Categories and data

Results/Remarks

● For forests and general asset values, physical
losses and damages are modeled.

● Vulnerability curves relating to hazard
intensity to damage extent were obtained for
the wind-induced general asset damages.

● The possibility of retrieving an even larger
variety of features (ecological regions, critical
infrastructure, urban assets, etc.) remains
open.

● Comparison with print media accounts,
official records, and insurance reports,
strengthens the picture of multi-faceted
impacts obtained from computations.

● The standard impact computations within
CLIMADA capture these metrics as asset
damages and affected population.

● Considering probabilistic risk metrics to
gauge the potential risk landscape and to
adequately place the occurrence of historic
events therein might be considered beneficial.

Resources
● OSM-flex package – GitHub repository.
● Polygon files extraction – GitHub repository.

Keywords
OpenStreetMap, open-source GIS tools, climate risk assessment, natural
hazards, adaptation, Urban areas, Hazard local effect; Vulnerability
analysis.

Tag/Type Climate Change and Hazard Data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Integration of high resolution local geospatial data
variables to improve hazard characterization (e.g.,
run-off of different land cover types), exposure and
vulnerability analysis (e.g., classification of buildings,
road network, open spaces) depending on specific
impact models input.

HEV4. On the positioning of emergencies detection units based on geospatial data of urban response
centres
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Table 44: HEV4's recipe table.

Abbrev
.

Categories and data

EV-HE
V-4

Title
On the positioning of emergencies detection units based on
geospatial data of urban response centres (Peixoto et. al., 2023).
[ Link ]

Summary

This recipe proposes a data-driven methodology for the optimal
placement of multi-emergency detection units in smart cities,
combined with geospatial data on urban infrastructure,
ultimately, to define mitigation zones and enhance urban
resilience to emergencies.

Variables (input)

● Input from mitigation response centers and
their geospatial metadata (files in XML
format).

● Input from existing urban infrastructure.
● General data: (i) Extraction area:

OpenStreetMap, (ii) Pols and roads:
OpenStreetMap, (iii) Mitigation zones (MZ),
and (iv) Positions of Emergency Detection
Units (EDU).

● Parameter for algorithms: Severity index of
the zones.

Methods/Models

● Mathematical definitions of the zone of
interest, mitigation zone, point of interest, and
severity index are proposed.

● Algorithms to indicate EDUs' positions:
o Random: (i) Lowest computational

cost, and (ii) No criteria for selecting
the units’ positions.

o Balanced: (i) Utilized after the
definition of MZs, (ii) Avoid uncovered
areas and EDUs overlapping, (iii)
Calculates coverage radius of EDU in
each mitigation level so units avoid
overlapping, and (iv) No guaranteed
coverage around the level's borders.

o Balanced+: (i) Improves Balanced
algorithm positioning unit correctly
covering around the level's borders,
and (ii) No uncovered areas within the
area of influence.

o Restricted: (i) Add restrictions to the
optimization problem for improving
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Abbrev
.

Categories and data

the applicability of the units'
deployment, (ii) Cases where actual
deployment is not possible, and (iii)
Most computationally demanding.

o Computation of (i) the risk perception
function, (III) the equation for a
mitigation level of a zone, (iv) the total
number of EDUs, (v) the total number
of EDUs per mitigation level.

● Mitigation zones act as data layers of a target
area.

o Based on the indirect relation
between geospatial data, and urban
hazards and emergencies.

o The resilience to untreated
emergencies based on the urban
infrastructure was considered.

Results/Remarks

● The concept of mitigation zones is proposed.
● The placement of Emergency Detection Units

is considered as a potential issue for
macrosystems solutions for entire cities.

● Maps of mitigation zones and response
centers for an area of influence. (i) Depiction
of the zones with low, medium, and high
mitigation risk, and (ii) Depiction of the
positions of the EDUs within the zones of risk
to highlight uncovered areas.

Resources N/A

Keywords
Smart cities; Sustainable and resilient cities; Emergency detection,
Sensors positioning; Urban infrastructure monitoring, Vulnerability
analysis of service networks.

Tag/Type Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Sensor-based model to enhance the real time
monitoring of service network (e.g., electricity,
transport) and improve vulnerability analysis over
time through monitoring.
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HEV5. Advancing building data models for the automation of high-fidelity regional loss estimations
using open data

Table 45: HEV5's recipe table.

Abbrev
.

Categories and data

EV-HE
V-5

Title
Advancing building data models for the automation of
high-fidelity regional loss estimations using open data (Angeles
et. al., 2022). [ Link ]

Summary

This recipe presents a conceptual data model to integrate and
query detailed building information, substantiated by a case
study showing the model's effectiveness in generating models
for accurate loss estimation.

Variables (input) ● Spatial and geometric modelling data
(Fragility library available).

Methods/Models

● Building damages: (i) Assembling and
managing spatial and geometric data of
thousands of constructed buildings, and (ii)
Building Topology Ontology (BOT).

● Hazards: (i) Wind, wind-driven rain, wind-borne
debris, (ii) Specification on site-specific
building geometries and locations paired with
DEM, and (iii) Rain Admittance Factor (RAF) to
discern the intensity of horizontal rainfall.

● Response: (i) Realistic loading
characterizations for each actual constructed
building, (ii) Supporting holistic simulation of
each building's unique load path to derive
consequent response quantities, and (iii) The
automated development of structural analysis
models to incorporate engineering demand
parameters for specific components.

● Damage: (i) Automated probabilistic analyses
in the damage assessment, (ii) Scenarios →
global fragility or vulnerability curves for each
generic building model, (iii) Fragility
descriptions for wind-vulnerable building
elements, (iv) Component-specific fragility
models, and (v) Assembly-based vulnerability
(ABV) approaches.

● Scenarios: (i) Scenario 1: Hazard Analysis:
Given a reference building and a site, find all
buildings on the site that are within a given

D1.3 – Impact modelling data requirements and methods to treat data gap filling and data uncertainty 112

https://doi.org/10.1016/j.autcon.2022.104382


DR
AF
T

Abbrev
.

Categories and data

distance from the reference building, (ii)
Scenario 2: Response Analysis (Fault Trees):
Given a breach in the building façade,
quantify the new internal pressure per story
and determine which elements require load
recalculation, (iii) Scenario 3: Damage
Analysis: Determine the correlation
coefficient, between the damage states of the
i-th and j-th elements, considering elements
of the same type, and (iv) Scenario 4: Loss
Analysis: For a given story within a building,
calculate the total surface areas of each
element sub-class and type.

Results/Remarks N/A

Resources N/A

Keywords Hurricane, Commercial, Regional loss estimation, Data model, Open data.

Tag/Type Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Multi-hazard exposure and vulnerability classification
and analysis for buildings structural damage
assessment.

HEV6. Estimating exposure of residential assets to natural hazards in Europe using open data

Table 46: HEV6's recipe table.

Abbrev
.

Categories and data

EV-HE
V-6

Title Estimating exposure of residential assets to natural hazards in
Europe using open data (Paprotny et. al., 2020). [ Link ]

Summary

This recipe offers a methodology based on a non-parametric
Bayesian network model using open data to estimate residential
asset exposure to natural hazards in various European capitals,
providing improved national-level economic valuations of
residential properties.

Variables (input)

● Data: (i) building footprints (OpenStreetMap),
(ii) high-resolution city models, (iii)
pan-European raster datasets, (iv) historical
hazard events, (v) Country-level
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Categories and data

socioeconomic data, and (vi) Alternative
country-level asset value estimates.

● Main sources: (i) Eurostat, (ii) OpenStreetMap,
(iii) HANZE database, and (iv) Copernicus Land
Monitoring Service.

Methods/Models

● Calculations: (i) Identification of residential
buildings, (ii) Models for building height
prediction, (iii) Calculation of floor space, (iv)
Residential building stock estimation, (v)
Household content stock estimation.

● Application of a building-level damage model.
● The estimation of building height and number

of floors was based on a non-parametric
Bayesian network (BN), a probabilistic model
allowing multivariate dependency analysis
and uncertainty distributions of the
predictors.

● Country-level asset validation of buildings
and households: (i) Perpetual inventory
method (PIM): estimate the value of a stock
(e.g., stock of dwellings), and (ii) Households:
memorandum items in ESA 2010 were
considered. The PIM method was applied once
again. Annual investment was calculated
based on the Classification of Individual
Consumption by Purpose (COICOP).

Results/Remarks

● Average national-level gross replacement
costs of the residential assets are computed.

● Output information: (i) Building-level asset
value estimates for a test study area, (iii)
Country-level building/content value per
square space of floor space.

● Validation statistics for the building height
prediction model and pan-European
estimations of content value both for
buildings and households.

● Limitations: (i) datasets can be affected by
regional methodological specifics (e.g., rural
areas), (ii) Quality of expenditure data are not
robust given the divergence in deflators for
individual items, (iii) households stock also
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Categories and data

semi-perishables and perishables which are
excluded from any wealth assessments due
to lack of information, (iv) non-homogeneous
datasets, (v) the BN model is configured using
expert knowledge.

● This methodology might be extended: (i) to
calculate past recorded damages from natural
hazards, (ii) to calculate the average quality of
residential buildings and households’ incomes
and (iii) to rescale absolute damage functions.

Resources

● BN model code (in Matlab) is available upon request.
● UNINET Tool (free for academic purposes).
● Data retrieval and processing in formats other than GIS utilized

GDAL/OGR tools.
● Flood damage in the HOWAS21 database.
● Additional resources of data for estimating residential building

value can be seen in the supplementary information, Table S3.
● Additional information on Consumption expenditure categories by

COICOP 3-digit codes and durable items included in those
categories by COICOP 4-digit codes can be seen in the
supplementary information, Table S6.

● Data for the household final consumption expenditure can be seen
in the supplementary information, Table S8.

Keywords Residential assets; Bayesian-based models; Buildings Exposure; Buildings
Vulnerability.

Tag/Type Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Classification of buildings features supporting
exposure and vulnerability analysis of residential
assets under different natural hazards.

HEV7. Asset exposure data for global physical risk assessment

Table 47: HEV7's recipe table.

Abbrev
.

Categories and data

EV-HE
V-7 Title Asset exposure data for global physical risk assessment

(Eberenz et. al., 2020). [ Link ]
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Summary

This recipe introduces a transferable, high-resolution asset
exposure dataset using the LitPop methodology combining
nightlight intensity and population data to improve the spatial
distribution of asset values, to enhance economic disaster risk
assessments and climate change adaptation methods.

Variables (input)

● Datasets: (i) Gridded nightlights (Lit); satellite
data from Nasa Earth Observatory/Black
Marble product, (ii) Gridded population (Pop);
non-spatial population and cartography data,
(iii) Produced capital, (iv) GDP-to-wealth ratio,
(v) GDP and GRP.

● GDP does not directly measure physical
assets but fills data gaps for the evaluation of
the LitPop methodology.

Methods/Models

● LitPop downscaling: Lit and Pop data produce
a gridded digital number and are combined
with the total asset value per country to
obtain asset exposure data and to compare
GDP (macroeconomic output indicator)
against the GRP for evaluation of the
approach.

● Total assets per country and GDP are
distributed and calculated according to a
function of nightlight luminosity and
population count.

● lpix; the asset value per cell grid; ltot:
represents either asset value or GDP.

● Evaluation: ten combinations of Lit and Pop
are assessed (LitmPopn).

● Limitations: (i) Asset distribution assumes
physical wealth is distributed equally, (ii)
Assets assumed to be located exactly where
people live, (iii) Population data in many
countries are coarse, (iv) Nightlight-based
models are prone to saturation and blooming
limitations, (v) Lack of reference asset value
data on subnational level, (vi) Lack of
consistent exposure data on a global scale,
and (vii) The methodology does not include
infrastructure type and vulnerability.

Results/Remarks
● LitPop-based asset exposure data are

accessible and usable as a basis for global
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comparable economic risk assessments.
● The application of the asset exposure data for

local assessments in countries within
low-income groups should be treated with
caution.

● Lit1Pop1 combination distributes favors GDP
distribution to the subnational level than the
other combinations of nightlight and
population data accessed.

● Additional sector-specific asset inventories
and auxiliary data should be considered.

● High-resolution asset exposure for LitPop
combinations is estimated.

Resources
● Asset exposure for 224 countries.
● Open-source software for adaptation: CLIMADA.
● LitPop module and Tutorial on LitPop calculations.

Keywords Asset exposure; Nightlight intensity; economic assessment; risk
assessment; climate change.

Tag/Type Exposure and Vulnerability methodology.

Application
in ICARIA

Potential use in
ICARIA

Global high-resolution asset exposure methodology,
applicable for estimating economic impact
assessment under different natural hazards.

HEV8. Mapping Europe into local climate zones

Table 48: HEV8's recipe table.

Abbrev
.

Categories and data

CH-EV-
HEV-8

Title Mapping Europe into local climate zones (Demuzere et. al., 2019).
[ Link ]

Summary
This recipe constructs a European database, focusing on
characterizing urbanized landscapes, offering dedicated
datasets for the training areas.

Variables (input)
● WUDAPT data.
● Products: (i) Sentinel-1, (ii) Sentinel-2, (iii)

Defense Meteorological Program Operational

D1.3 – Impact modelling data requirements and methods to treat data gap filling and data uncertainty 117

https://doi.org/10.3929/ethz-b-000331316
https://doi.org/10.5905/ethz-1007-226
https://climada-python.readthedocs.io/en/stable/tutorial/climada_entity_LitPop.html
https://climada-python.readthedocs.io/en/stable/
https://doi.org/10.1371/journal.pone.0214474


DR
AF
T

Abbrev
.
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Linescan System: Nighttime lights, and (iv)
Local Climate Zone maps (LCZ) and their
parameters.

● Indexes based on Earth Observation data: (i)
the minimum and maximum Normalized
Difference Vegetation Index (NDVI), (ii) the
Biophysical Composition Index (BCI), (iii) the
mean Normalized Difference BAreness Index
(NDBAI, (iv) the mean Enhanced Built-up and
Bare land Index (EBBI), (v) the mean
Normalized Difference Water Index (NDWI), (vi)
the mean Normalized Difference Built Index
(NDBI), (vii) the Normalized Difference Urban
Index (NDUI: the combination of the maximum
values of NDVI, NDWI and NDBI indexes with
the coarser resolution nighttime light
imagery.

Methods/Models

● A step-by-step methodology in creating a
general-use European Local Climate Zone
map that can be used for climate studies is
presented. The derived datasets can be used
as substitute data to cover limitations in
sector-specific local data gaps.

● Evaluation of LCZ map techniques: (i) Urban
land cover, (ii) Impervious surface cover (IMD)
and building height (BH), (iii) Anthropogenic
heat flux (AHF), and (iv) Sky view factor (SVF).

Results/Remarks

● Map of the European LCZ classification based
on the random forest classifier, binary urban
maps, and assessment of urban land cover.

● Urban canopy parameters: (i) Building height,
(ii) Maps of impervious surface fraction (IMD)
and anthropogenic heat flux (AHF), Sky view
factors map.

Resources

● The European LCZ map is available from the official WUDAPT
(World Urban Database) data portal.

● There is an LCZ generator provided at
https://lcz-generator.rub.de/.

● LCZ datasets derived from the use of the generator are provided at
https://lcz-generator.rub.de/submissions.

Keywords European Local Climate Zone map; E-OBS data.
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Abbrev
.

Categories and data

Tag/Type Climate Change and Hazard Data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Improved hazard assessment based on urban/land
morphology and cover. Classification of urban
density, building types and land cover.

HEV9. CLIMADA v1: a global weather and climate risk assessment platform

Table 49: HEV9's recipe table.

Abbrev
.

Categories and data

CH-EV-
HEV-9

Title CLIMADA v1: a global weather and climate risk assessment
platform (Aznar-Siguan et. al., 2019). [ Link ]

Summary

This recipe presents an open-source, modular multi-hazard
decision support tool for assessing extreme events and
socioeconomic impact by hazard, exposure, and vulnerability
data, supporting scalable, parallel computations and
multi-hazard probabilistic assessment.

Variables (input)

● Hazard events for: storms, floods, droughts,
heatwaves.

● Socioeconomic aspect: exposure and impact
(vulnerability) functions.

● Exposure: e.g., geographical distribution of
people, livelihoods, infrastructure, services,
etc.

● Impact functions: impact of a hazard on the
corresponding exposures.

● Nighttime lights of NASA's Black Marble 2016.
● GDP values.
● International Best Track Archive for Climate

Stewardship (IBTrACS) archive for tropical
cyclones.

Methods/Models

● A fully probabilistic risk assessment
modelling methodology is combined with
economic development and climate impact
scenarios to assess adaptation measures.
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Abbrev
.

Categories and data

● Engine's risk metrics: (i) Expected annual
impact (EAI), (ii) Average annual impact (AAI),
(iii) Probable maximum impact (PMI), and (iv)
Impact at the event.

● Medium (10 km) to high (500 m) resolution.

Results/Remarks

● Supports risk management options and
adaptation measures.

● Estimates: (i) the expected socioeconomic
impact of weather and climate, (ii) the
incremental increase from economic growth,
(iii) the incremental increase due to climate
change.

● Characteristics: of CLIMADA (i) open source,
(ii) modular, (iii) scalable.

Resources

● CLIMADA GitHub repository and scripts for the recipe.
● ETH Data Archive
● Shaping climate-resilient development: a framework for

decision-making

Keywords Risk assessment; Socioeconomic impact; Probabilistic approaches;
Damage estimation.

Tag/Type Climate Change and Hazard Data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Open-source platform for multi-hazard calculations
suitable for regional to whole-country economic
impact assessment studies.

HEV10. Comparing an insurer’s perspective on building damages with modelled damages from
pan-European winter windstorm event sets: a case study from Zurich, Switzerland

Table 50: HEV10's recipe table.

Abbrev
.

Categories and data

CH-EV-
HEV-10

Title

Comparing an insurer’s perspective on building damages with
modelled damages from pan-European winter windstorm event
sets: a case study from Zurich, Switzerland (Welker et. al., 2019).
[ Link ]

Summary This recipe highlights the benefits of a probabilistic approach
for assessing rare events impacts and uncertainties, for
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Abbrev
.

Categories and data

claims-based risk assessment with test examples of the risks of
winter windstorms in Europe.

Variables (input)

● OpenStreetMap data.
● Hazard input: (i) Windstorm Information

Service (WISC): Windstorms, and (ii) GVZ
database: damages of past events.

● Other input: (i) Historic windstorm hazard set:
140 windstorm events in Europe (1940-2014);
"WISC operational", (ii) Windstorm footprints
(computed running the UK Met Office Unified
Model at 4.4km resolution with ERA-20C
reanalysis and ERA-Interim analysis; "WISC
synthetic", and (iii) Insurance claims data.

Methods/Models

● Probabilistic windstorm hazard extension;
“WISC probabilistic extension”: perturbations
in the WISC historic events are introduced
creating new probabilistic footprints
(scenarios) of possible hazard events
(windstorms in this recipe).

o The frequencies of the footprints are
estimated to recreate the cumulative
distribution function of generalized
extreme values fitted to historic
events.

o 4118 probabilistic events and 142
original events were considered.

● Damage modelling: the damage results are
based on: (i) the intensity of the hazard event,
(ii) the value of the assets, and (iii) the
susceptibility of the asset to damage.

o GVZ damage model (proprietary): (i)
uses a dedicated building database,
(ii) only buildings affected by gusts
with speed more than 90km h-1 are
considered, (iii) the value of each
building is multiplied by the mean
damage degree (MDD) factor (obtain
from vulnerability curves) to estimate
damage, and (iv) provides the
probability of building affected using
a stochastic approach.
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Abbrev
.

Categories and data

o CLIMADA impact model: (i) exposure is
based on public data (the total value
of the physical assets, the nightlight
intensity, and the population density
are included), (ii) uses MDD curves for
exposure evaluation.

● Damage and risk assessment: risk = extent of
damage x probability of damage. Metric for
risk assessment in this recipe: (i) Average
annual damage (AAD), (ii) Exceedance
frequency curve (uncertainty of exceedance
frequency curve), and (iii) Pareto pricing
(defines the price of insurance contracts) and
general Pareto distribution (GPD).

Results/Remarks

● Output: (i) Maps of wind gusts for every grid
cell in the tested area for WISC historic,
synthetic, and probabilistic extensions, (ii)
AAD is provided based on the insured
damages, (iii) Exceedance frequency curves
for building damages including uncertainty
are provided, (iv) Normalized the insured total
damages in comparison to the modeled total
damages are provided, (v) Rapid damage
estimation directly after a hazard event is
offered, useful for damage assessment, and
(vi) WISC historic event data and local
exposure information enable a reliable
derivation of the return period of a (rare)
hazard event.

● Uncertainties for damage estimation: (i)
uncertainty associated with the assessment
of the event, (ii) uncertainty regarding the
damage model itself, (iii) Insurance claims
might not report the exact time and date of
damage (which introduces uncertainties), and
(iv) In damage modelling estimations, movable
property, damage to infrastructure, and
business interruption are not included.

● A probabilistic extension of the assessment
of potential asset damages and risk of
(extreme) hazard events are provided and
associated with the evaluation of
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Abbrev
.

Categories and data

uncertainties.

Resources

● CLIMADA GitHub repository and scripts for the recipe
● ETH Data Archive
● Winter windstorm model : (i) Probabilistic Windstorm Hazard Event

Set for Europe, and (ii) The probabilistic hazard event set WISC
probabilistic extension for each European country

Keywords Hazard events; Windstorms; Probabilistic methods; Insurance claims.

Tag/Type Climate Change and Hazard Data; Exposure and Vulnerability data.

Application
in ICARIA

Potential use in
ICARIA

Connection of public hazard datasets with exposure
and vulnerability methodology to assess impacts and
uncertainties, focused on windstorms but transferable
to other hazards.
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6 ICARIA’s domain user survey

The main objective of the survey

The development of ICARIA's holistic model aligns with current SOTA methodologies, focusing on
identifying risk/impact assessment strategies from a multi-hazard perspective and considering all
climate-hazard categories, (including heatwaves, forest fires, droughts, floods, storm surges, and
storm winds), covering complex, compound, and cascading events. However, accessing the
replicability and capabilities of the holistic model remains the ultimate target. To achieve this, case
study areas, namely the Barcelona Metropolitan Area, South Aegean Region, and Salzburg Region
were subjected to combined climate-hazard events. This practical exposure allowed experts to
concurrently assess and identify modelling gaps and uncertainties during the data collection phase.
Subsequently, experts could unravel the correlations between impact/risk assessment
methodologies, case study areas, and modelling requirements. While this approach provides a robust
foundation for creating and applying the holistic model, the complementary input from experts
regarding data gaps associated with data-driven methodologies remains crucial. This input is sought
to address potential expansions and modifications of the chosen methodologies. The domain user
survey serves exactly this complementary role, gathering answers from a panel of ten (10) experts
(internally or externally to the consortium). Their expertise and experience in local and/or EU-funded
projects guide an assessment of the latest state-of-the-art methodologies present in data-gaps
treatment methodologies and data-driven techniques. The survey is structured following a systematic
approach, commencing with the treatment of data gaps identified in previous projects where experts
actively participated. This information is key, helping in recognizing recurring patterns of data gaps
that may be shared across ICARIA and related projects, guiding case facilitators towards an extensive
understanding of methodologies appropriate for addressing data gaps and uncertainties.
Subsequently, as a second step, experts are prompted to identify potential knowledge gaps based on
their practical experience. This aspect proves valuable in the analysis of both single and compound or
cascading scenarios from local authorities and case facilitators, identifying vulnerabilities within
specific risk categories. Further, an additional key point of the survey is the evaluation of the
functionality and applicability of existing and emerging AI methodologies, specializing in utilizing AI to
treat data gaps and address uncertainties within climate and CI datasets when modelling climate
adaptation studies, mirroring the use cases of ICARIA. Lastly, experts are asked to provide references
to milestone papers that may or may not play a crucial role in the integration of data gap treatment
methodologies with AI techniques, potentially extending to areas such as climate data. This inclusion
ensures that ICARIA remains aligned with the latest state-of-the-art approaches.

A brief list of the experts and a description of the range of the topics are covered based on their
background and expertise. While climate resilience remains the main object in the ICARIA project,
diverse backgrounds of experts create a whole picture of the current practices for
data-driven/AI-based methodologies (when applied to climate data or otherwise). The following list of
eight (8) experts including their backgrounds and specialties can be found in Table 1 below.
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Table 51: List of experts participated in ICARIA's domain user survey.

Name Institution Expertise Inter-/Exter
nal

Robert Monjo i
Agut FIC Climate statistical downscaling and

weather data
Internal

Siddharth Seshan KWR AI models and data fusion techniques External

Gerasimos
Antzoulatos CERTH-ITI Computer intelligence methods and

applications
Internal

Damianos
Mantsis CERTH-ITI Mathematics, Meteorology and

Oceanography
Internal

Konstantinos
Vlachos CERTH-ITI Geoscience & RS in data-driven

methodologies
Internal

Ioannis Papoutsis National
Observatory Athens

EO and AI methodologies; Climate change
& natural disasters monitoring

External

Ioannis Prapas National
Observatory Athens

DL for Earth systems, Big Data, and ML
methodologies

External

Spyros
Kondylatos

National
Observatory Athens

DL for Earth systems; Bayesian DL, and
Wildfire forecasting

External

Experts’ background spans a diverse pool of subjects, encompassing methodologies including but not
limited to EO, RS, statistical and dynamical downscaling techniques, along with methodologies for DL,
AI applied to climate resilience, and a range of other domains. Although the initial emphasis was
placed on updating internal expertise, the participation of external specialists is equally indispensable
in achieving the purpose of compiling lists of state-of-the-art emerging data-driven methodologies,
particularly when integrated with insights from user studies. For the survey purposes, the EU Survey
portal was used to initiate, create, publish, and collect the results of the survey. This portal offers a
unique, user-friendly UI that intuitively guides the users through the creation of a survey, providing a
plethora of options in terms of the structure of the survey. The link to the survey is provided in this
link: https://ec.europa.eu/eusurvey/runner/f96af3c2-67bc-11df-2c43-f5f6b97351cd. A figure of the
survey as can be found in the EU survey’s dedicated web interface can be find below:
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Figure 4: Overview of the ICARIA's domain survey questionnaire.

Overview of the summary

A summary of the results, and a brief description of the key methodologies proposed, as well as the
output of the survey will be added below.
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Table 52: ICARIA's domain user survey list of questions.

Nr
. Questions

1
Based on your expertise and experience from previous projects, please define data gap
treatment methodologies used in previous EU-funded projects that you may have participated
in and/or on-going projects that you currently implement.

2

Based on your expertise and experience from previous projects, please mention any
knowledge gaps from practical experience in implementing trials or case studies in categories
of datasets or methods for different elements of risk or different events or even for compound
events.

3

Based on your expertise and experience from previous relevant projects, which do you think
are the key aspects in using existing AI functionalities for filling the data gaps that occur in
climate and CI datasets used for modelling the impacts of climate change or for scenario
building in climate adaptation case studies or use cases? Please provide links for any sources,
techniques and methods mentioned in your answer.

4

Based on your domain expertise, which do you think are the emerging AI functionalities that
should be used for filling data gaps in climate and CI datasets in future related projects?
Please refer to any limitations or pitfalls that these functionalities may have and need to be
taken into account. Please provide links for any sources, techniques and methods mentioned
in your answer.

5
Please provide reference(s) for three (3) milestone research papers that you consider as
crucial for the development of the methodology implemented in the ICARIA project. Elaborate
shortly on the usage of each one in the context of the project.
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Nr
. Answers

1

Data gap treatment methodologies used in previous EU-funded projects: (1) interpolation, (2)
gap filling with a specific value, (3) Kolmogorov-Smirnov-based inhomogeneity test, (4) masked
modelling, (5) availability of accurate, high resolution (~ 2km) meteorological forecasts (used
for training ML models, Copernicus ERA-5 reanalysis data), (6) availability of meteo forecasts
of different quality standards (this distribution shift results in forecasting models to
underperform), (7) lack of human-related assets (as opposed to environmental monitoring
variables, that affect modelling climate change impacts; these assets are typically neglected,
or proxies must be used e.g., population distribution and road network as a proxy for increased
for example wildfire ignition risk), (8) simulations: atmospheric models to generate
meteorological conditions in areas where observations at the desired frequency are missing.
The generated data will have biases compared to the real data, and the quality will depend on
the sophistication of the model simulation, (9) Multi-Stakeholder’s forums, (10) Leverage
crowdsourcing and social media platforms (data from heterogeneous sources), (11) –
Semantically representation (the usage of Smart Data Models and standardize data formats,
units and structures, enables the seamless fusion and harmonization of heterogeneous data
ensuring compatibility, coherence and data sharing), (12) Specific domain ontologies ( in the
context of climate and critical infrastructure (CI) datasets used for modeling climate change
impacts or scenario building in climate adaptation case studies), and (13) FAIR principles, data
provenance.

2

Knowledge gaps from practical experience: (1) inhomogeneities, (2) outliers, (3) physical
inconsistencies, (4) uncertainty of past events. Historical meteorological observations with
adequate geographical coverage date back just a few decades in the past. For example,
observations of sea surface temperature over the oceans or precipitation over the ocean or
remote areas are absent beyond 1950. This means that records of historical extremes are not
available, which can compromise the simulation of future extreme events, (5) Temporal
resolution, (6) Spatial resolution, (7) Socioeconomic data, (8) Incomplete datasets, (9)
Incomplete event catalogues of natural disasters, (10) Real-time data and monitoring, (11) Lack
of annotated datasets, (12) Limiting effectiveness of predictive models, (13) High uncertainty in
climate models, and (14) Risk mapping (creation of accurate hazard and risk maps).

3

Existing AI functionalities: (1) temporal and spatial auto-correlation, (2) climate projections &
simulations, (3) domain adaptation models, (4) non-stationarity (due to climate change are key
aspects that should be taken into account, especially for the evaluation), (5) use of
spatiotemporal masked autoencoders for pre-training on the available data (and make them
more resilient to data-gaps), (6) missing data imputation (using data-driven algorithms), (7)
anomaly detection, (8) synthetic data generation, (9) heterogeneous data integration
(techniques like data fusion and ensemble learning can help combine different datasets
effectively), (10) interoperability (harmonizing data forms and formats), (11) digital twin (AI can
generate multiple scenarios for climate adaptation by simulating various climate and
socio-economic conditions in a Digital Twin environment), (12) spatial downscaling (AI
techniques like convolutional neural networks (CNNs) can downscale global climate model
outputs to higher resolutions needed for local impact assessments), (13) temporal downscaling
(AI can refine temporal granularity of climate data, making it suitable for short-term event
analysis and adaptation planning, (14) uncertainty analysis (AI can be used to quantify
uncertainties in climate projections and impact assessments. Bayesian neural networks and
ensemble learning methods can provide probabilistic estimates and confidence intervals, (15)
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sensitivity analysis (AI can perform sensitivity analysis, identifying the most influential
variables and reducing uncertainty in model predictions), (16) trend Analysis (AI algorithms can
identify long-term trends and patterns in climate and CI datasets, helping to detect gradual
changes and emerging risks, (17) real-time monitoring (AI can process real-time data from
sensors and IoT devices to provide immediate insights into current climate conditions and
infrastructure status, and (18) dynamic adaptation (AI can be used to dynamically adjust
models and scenarios based on real-time data, enhancing the responsiveness of climate
adaptation strategies.

4

Emerging AI functionalities: (1) domain adaptation models, extrapolation (2) AI methods: GANs,
Diffusion models, (3) self-supervised learning, (4) physics-aware models, (5) self-supervised
pre-training, creation of ML-based emulators of physical purposes, (6) Reinforcement Learning
(RL), (7) Spatial-Temporal Graph Neural Networks (ST-GNNs), Long Short-Term Memory (LSTM)
Networks, (8) Synthetic Minority Over-sampling Technique (SMOTE).

5

Reference(s) for three (3) milestone research papers: Source for Kolmogorov-Smirnov
goodness-of-fit test, (1) Example of a physics-aware model, (2) Example of DL application for
Earth system science, (3) Example of causal relations from data, (4) Example of DL forecasts
from sparse observations, (5) Artificial intelligence reconstructs missing climate information.

Table 53: ICARIA’s domain user survey answers table.

Summary of the survey

The summary of the domain user survey for data gap treatment methodologies, knowledge gaps from
practical experience, and AI functionalities can be organized in three lines: (1) Data gap treatment, (2)
Existing AI functionalities, and (3) Emerging AI functionalities. The list of the experts who participated
in the survey shared their extensive experience in participating in previous and current EU-funded
projects and highlighted data inhomogeneity and inconsistency as the main issues to be addressed.
For that reason, methodologies such as interpolation, value data gap filling, and inhomogeneity tests
were proposed. Additionally, it was underlined that high-resolution meteorological forecasts and
Copernicus ERA-5 reanalysis data are critical for training machine learning models, though varying
quality standards can impact forecasting accuracy. This is only an example of the utilization of
machine learning and AI methodologies for climate change. In terms of AI functionalities, current AI
capabilities include temporal and spatial auto-correlation, climate projections and simulations,
domain adaptation models, non-stationarity, and the use of spatiotemporal masked autoencoders as
key candidate methodologies to improve resilience to data gaps. This is reflected in the ICARIA project
and has the potential to be linked with the climate change and hazard data for cases where weather
data are in scarcity (e.g., not fully covering the studied area or when weather observations are not
reaching the minimum years necessary for providing accurate and robust output). Further, improving
climate change methodologies using AI tools, should include a list of emerging methods including,
domain adaptation models, extrapolation AI methods such as GANs, Diffusion models, self-supervised
learning, physics-aware models, and self-supervised pre-training, creation of machine learning-based
emulators of physical purposes. These methodologies allow for further investigation and application
through ICARIA's lab tests and trials and mini-trials, allowing for inclusion of the suggestions from
experts, utilizing concrete tools developed in previous EU-funded and other various related projects.
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The diversity of the experts allows for creating a more complete idea of the applicability of AI tools,
and how realistic such tools would be for ICARIA's purposes.
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7 Conclusions

The issue of data gaps and uncertainties treatment in quantitative hazard/impact assessment is
crucial to guarantee reliability of results. A variety of methods and tools can be found in literature,
with robust approaches that can increasingly rely on the ever-growing availability of high-resolution
information from remote sensing, in-situ monitoring networks and citizen-science tools, as well as of
computing capacity enhanced by machine learning and AI. Nevertheless, the identification and
communication of data gaps and uncertainties related to specific hazard/impact modelling results is
important beyond the “data gap filling problem”, to acknowledge uncertainties and limitations in risk
assessments and simulations derived by the implementation of the ICARIA Holistic modelling
framework in any s case study area.

This is even more crucial in the context of assessments encompassing the impacts on multiple assets
determined by complex multi-hazard events (compound coincident, compound consecutive, cascading
effects, see D1.1) which, compared to single-hazard assessments, highlight even more the complexity
for decision makers and planners to make choices and take science-informed decisions aimed at
increasing resilience. These uncertainties are related not only to the missing data concerning specific
Hazard-Exposure-Vulnerability (H-E-V) variables used as input in a given impact assessment model,
but intrinsic to the dynamics of compound events and cascading effects (Zuccaro et al., 2018), in
which uncertainties such as the probability of transition among hazards, and the probability of
triggering cascading effects following a given threshold of damage on a critical service asset or
network component contribute to propagate errors in the quantitative assessment of the final
scenario.

Therefore, considering how uncertainties related to climate change itself depend on a variety of
aleatory factors and tipping points (Lenton et al., 2019) it is of extreme importance that the results of
ICARIA probabilistic impact assessment models, while improving their reliability through data gap
filling, data refinement (and associated uncertainties) with respect to the space-time variables and to
H-E-V parameters involved in the areas object of the analysis, always acknowledge all data sources
used as input, existing data gaps or low-resolution data used e.g., as a proxy of a missing variable This
will be achieved by mapping in the Trials and Mini-Trials modelling framework the key variables and
datasets (see D1.1 section 3.2) used, the data sources and the application (already implemented in
ICARIA Lab Tasks or potential within WP4 Trial implementation) of the ICARIA cookbook. This will allow
decision-makers to develop climate adaptation and resilience plans adequately informed by scientific
evidence and existing limitations in knowledge, pursuing the achievement of encountering hazard
events with robust and informative models and frameworks.

.
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Annex A: Main sources of open data repositories for local hazard
downscaling and exposure/vulnerabilities classification and
analyses

Table A 1: List of open data repositories.

Hazard /Feature Relevant Parameters /
Indicators Dataset Source

Urban Climate
Local Climate Zones World Urban Database

https://www.wudapt.org
/lcz-maps/

Land Surface Temperature GoogleEarthEngine https://earthengine.goo
gle.com/

Extreme Events European Severe Weather
Database ESWD https://eswd.eu/

Hazard,
Exposure,

Vulnerability,
Losses

Risk Data Library

Global Facility for
Disaster Reduction and
Recovery (GFDRR) World

Bank

https://riskdatalibrary.o
rg/,

https://www.gfdrr.org/e
n

Land
characterization

Digital Surface Model EU-DEM

https://spacedata.coper
nicus.eu/collections/co
pernicus-digital-elevatio

n-model

Land cover classification
Coastal zones classification

Land use
Imperviousness

Copernicus Land
Monitoring Service

https://land.copernicus.
eu/

High resolution(100m) maps
of land cover/use, population,
GDP, and fixed assets for 42
countries from 1870 to 2020

HANZE v2.0 exposure
model

https://zenodo.org/reco
rds/6826536

A dual database at 1 km
resolution that includes an
ecosystem classification and
a coherent set of land surface
parameters (Faroux et. al.,

2015)

ECOCLIMAM
https://opensource.umr
-cnrm.fr/projects/ecocli

map/wiki

Population

Population distribution
(regional level)

Domestic product (regional)
Employment (regional)

Labour (regional)
Households (regional)

ARDECO
https://urban.jrc.ec.euro
pa.eu/ardeco/explorer?l

ng=en
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https://opensource.umr-cnrm.fr/projects/ecoclimap/wiki
https://urban.jrc.ec.europa.eu/ardeco/explorer?lng=en
https://urban.jrc.ec.europa.eu/ardeco/explorer?lng=en
https://urban.jrc.ec.europa.eu/ardeco/explorer?lng=en
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Population distribution (local
level)

European Settlement
map

https://human-settleme
nt.emergency.copernicu

s.eu/datasets.php

Excess mortality by month Eurostat
https://ec.europa.eu/eu
rostat/web/covid-19/po
pulation-health#Health

Population projections at
regional level Eurostat

https://ec.europa.eu/eu
rostat/statistics-explain
ed/index.php?title=Pop
ulation_projections_at_r

egional_level

Population affected by hazard
type

Deaths by hazard type
Injured by hazard type

Homeless by hazard type

EM-DAT https://public.emdat.be
/data

Population projections
CIESIN Columbia

University
Eurostat

https://sedac.ciesin.col
umbia.edu/data/collecti
on/popdynamics/maps

/services
https://ec.europa.eu/eu
rostat/statistics-explain
ed/index.php?title=Pop
ulation_projections_at_r

egional_level

Spatiotemporal population
and activity map

Joint Research Centre
Data Catalogue

https://data.jrc.ec.europ
a.eu/collection/id-0015

5

Buildings

Residential and
non-residential areas

Built-up surface
Building height
Built-up volume

European Settlement
Map

https://human-settleme
nt.emergency.copernicu

s.eu/datasets.php

Built-up impervious areas Copernicus Land
Monitoring Services

https://land.copernicus.
eu/en

Building geometries Open Street Map https://www.openstreet
map.org/

Energy demand Enerdata
https://zebra-monitorin
g.enerdata.net/overall-b

uilding-activities/

Transport
networks

Transport network graphs OpenStreetMap https://www.openstreet
map.org/

Road surfaces Urban Atlas https://land.copernicus.
eu/

Vegetation Burnt Area Copernicus Land https://land.copernicus.

D1.3 – Impact modelling data requirements and methods to treat data gap filling and data uncertainty 139

https://human-settlement.emergency.copernicus.eu/datasets.php
https://human-settlement.emergency.copernicus.eu/datasets.php
https://human-settlement.emergency.copernicus.eu/datasets.php
https://ec.europa.eu/eurostat/web/covid-19/population-health#Health
https://ec.europa.eu/eurostat/web/covid-19/population-health#Health
https://ec.europa.eu/eurostat/web/covid-19/population-health#Health
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_projections_at_regional_level
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_projections_at_regional_level
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_projections_at_regional_level
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_projections_at_regional_level
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_projections_at_regional_level
https://public.emdat.be/data
https://public.emdat.be/data
https://sedac.ciesin.columbia.edu/data/collection/popdynamics/maps/services
https://sedac.ciesin.columbia.edu/data/collection/popdynamics/maps/services
https://sedac.ciesin.columbia.edu/data/collection/popdynamics/maps/services
https://sedac.ciesin.columbia.edu/data/collection/popdynamics/maps/services
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_projections_at_regional_level
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_projections_at_regional_level
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_projections_at_regional_level
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_projections_at_regional_level
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_projections_at_regional_level
https://data.jrc.ec.europa.eu/collection/id-00155
https://data.jrc.ec.europa.eu/collection/id-00155
https://data.jrc.ec.europa.eu/collection/id-00155
https://human-settlement.emergency.copernicus.eu/datasets.php
https://human-settlement.emergency.copernicus.eu/datasets.php
https://human-settlement.emergency.copernicus.eu/datasets.php
https://land.copernicus.eu/en
https://land.copernicus.eu/en
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://zebra-monitoring.enerdata.net/overall-building-activities/
https://zebra-monitoring.enerdata.net/overall-building-activities/
https://zebra-monitoring.enerdata.net/overall-building-activities/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://land.copernicus.eu/en/map-viewer?dataset=70903c20fc2a4a90ad200bc95a7557d4
https://land.copernicus.eu/en/map-viewer?dataset=70903c20fc2a4a90ad200bc95a7557d4
https://land.copernicus.eu/en/products/vegetation
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Vegetation Properties
Vegetation Indices

Trajectories
Vegetation Phenology and

Productivity
Parameters

Monitoring Services eu/en/products/vegetat
ion

Dominant leaf type
Forest type

Tree cover density
Grassland

Water and wetness
Small woody features

Copernicus Land
Monitoring Services

https://land.copernicus.
eu/en

Vegetation plots and types European Vegetation
Archive

https://euroveg.org/eva
-database/obtaining-da

ta

Energy
Energy production by source
Energy intensity by fuel and

use type

IEA Database
Enerdata

https://www.iea.org/dat
a-and-statistics

https://www.enerdata.n
et/expertise/data-scien

ce.html

Greenhouse gas
emissions GHG emission by sector

Eurostat-EEA
IEA Database

Our World in Data
Enerdata

https://ec.europa.eu/eu
rostat/web/environment

/database
https://www.iea.org/dat

a-and-statistics
https://ourworldindata.
org/co2-emissions

https://www.enerdata.n
et/expertise/data-scien

ce.html

Trees

High Resolution Tree Cover
Density product at
pan-European level

European Environmental
Agency DataHub

https://www.eea.europa
.eu/en/datahub/datahu
bitem-view/b8a5a51f-0
c8e-44bc-bac2-2afa6b9

444da

International Tree-Ring Data
Bank (ITRDB)

(Paleoclimatology)

National Oceanic and
Atmospheric

Administration (NOAA)
product

https://www.ncei.noaa.g
ov/products/paleoclima

tology/tree-ring

Awesome-forests – Curated
list of forest datasets GitHub repository https://github.com/blut

jens/awesome-forests

European Forest Institute
Datasets and Maps

European Forest
Institute https://efi.int/

Windstorm
Extreme Wind Storms (XWS)

Catalogue Data repository https://www.europeanw
indstorms.org/

The Windstorm Information Windstorm Information https://climate.copernic
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https://land.copernicus.eu/en/products/vegetation
https://land.copernicus.eu/en/products/vegetation
https://land.copernicus.eu/en
https://land.copernicus.eu/en
https://euroveg.org/eva-database/obtaining-data
https://euroveg.org/eva-database/obtaining-data
https://euroveg.org/eva-database/obtaining-data
https://www.iea.org/data-and-statistics
https://www.iea.org/data-and-statistics
https://www.enerdata.net/expertise/data-science.html
https://www.enerdata.net/expertise/data-science.html
https://www.enerdata.net/expertise/data-science.html
https://ec.europa.eu/eurostat/web/environment/database
https://ec.europa.eu/eurostat/web/environment/database
https://ec.europa.eu/eurostat/web/environment/database
https://www.iea.org/data-and-statistics
https://www.iea.org/data-and-statistics
https://ourworldindata.org/co2-emissions
https://ourworldindata.org/co2-emissions
https://www.enerdata.net/expertise/data-science.html
https://www.enerdata.net/expertise/data-science.html
https://www.enerdata.net/expertise/data-science.html
https://www.eea.europa.eu/en/datahub/datahubitem-view/b8a5a51f-0c8e-44bc-bac2-2afa6b9444da
https://www.eea.europa.eu/en/datahub/datahubitem-view/b8a5a51f-0c8e-44bc-bac2-2afa6b9444da
https://www.eea.europa.eu/en/datahub/datahubitem-view/b8a5a51f-0c8e-44bc-bac2-2afa6b9444da
https://www.eea.europa.eu/en/datahub/datahubitem-view/b8a5a51f-0c8e-44bc-bac2-2afa6b9444da
https://www.eea.europa.eu/en/datahub/datahubitem-view/b8a5a51f-0c8e-44bc-bac2-2afa6b9444da
https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring
https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring
https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring
https://github.com/blutjens/awesome-forests
https://github.com/blutjens/awesome-forests
https://efi.int/
https://www.europeanwindstorms.org/
https://www.europeanwindstorms.org/
https://climate.copernicus.eu/windstorm-information-service
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Service (WISC) provide
information about European

Windstorms

Service us.eu/windstorm-inform
ation-service

Fire

Fire Weather Index – Dataset
description

Copernicus Climate
Change Service

https://datastore.coper
nicus-climate.eu/docum
ents/sis-european-touri
sm/C3S_D422_Lot2_TE
C_FWI_dataset_descript

ion_v2.pdf

Fire danger indicators for
Europe from 1970 to 2098

derived from climate
projections

Copernicus Climate
Change Service

https://cds.climate.cop
ernicus.eu/cdsapp#!/da
taset/sis-tourism-fire-d
anger-indicators?tab=ov

erview
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https://climate.copernicus.eu/windstorm-information-service
https://climate.copernicus.eu/windstorm-information-service
https://datastore.copernicus-climate.eu/documents/sis-european-tourism/C3S_D422_Lot2_TEC_FWI_dataset_description_v2.pdf
https://datastore.copernicus-climate.eu/documents/sis-european-tourism/C3S_D422_Lot2_TEC_FWI_dataset_description_v2.pdf
https://datastore.copernicus-climate.eu/documents/sis-european-tourism/C3S_D422_Lot2_TEC_FWI_dataset_description_v2.pdf
https://datastore.copernicus-climate.eu/documents/sis-european-tourism/C3S_D422_Lot2_TEC_FWI_dataset_description_v2.pdf
https://datastore.copernicus-climate.eu/documents/sis-european-tourism/C3S_D422_Lot2_TEC_FWI_dataset_description_v2.pdf
https://datastore.copernicus-climate.eu/documents/sis-european-tourism/C3S_D422_Lot2_TEC_FWI_dataset_description_v2.pdf
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-tourism-fire-danger-indicators?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-tourism-fire-danger-indicators?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-tourism-fire-danger-indicators?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-tourism-fire-danger-indicators?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-tourism-fire-danger-indicators?tab=overview
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Annex B: Templates to map data gap filling and uncertainty
treatment

Table B 1: Key input/output of the hazard assessment models - CS NAME.

DATASETS Climate Hazards

Hazard n. 1 Hazard n. 2 Hazard n. 3 Uncertaint
y treatment

Cookbook
ReferenceData Source Data Source Data Source

INPUT DATASETS

Historic
climatic
variables

Future
climate

projections

Land use
and terrain
information

- -

OUTPUT DATASETS

Hazard

Table B 2: Key input/output of the vulnerability assessment models for the Trials - CS NAME.

DATASETS Climate Hazards
Hazard n. 1 Hazard n. 2 Hazard n. 3 Uncertainty

treatment
Cookbook
ReferenceData Source Data Source Data Source

INPUT DATASETS

Exposure
PEOPLE
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Exposure
PROPERTIES

Exposure
NATURAL AREAS

Exposure
TRANSPORT

Exposure
WATER SECTOR

Exposure
ELECTRICITY

SECTOR
Exposure

WASTE SECTOR

OUTPUT DATASETS

Vulnerability
classes/functions

/data

Table B 3: Key input/output of the risk/impact assessment models for the Trial - CS NAME.

DATASETS Climate Hazards

Hazard n. 1 Hazard n. 2 Hazard n. 3 Uncertainty
treatment

Cookbook
ReferenceData Source Data Source Data Source

INPUT DATASETS

Exposure /
Vulnerability
PEOPLE

Exposure /
Vulnerability
PROPERTIES
Exposure /
Vulnerability

NATURAL AREAS
Exposure /
Vulnerability
TRANSPORT
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Exposure /
Vulnerability

WATER SECTOR
Exposure /
Vulnerability
ELECTRICITY

SECTOR
Exposure /
Vulnerability

WASTE SECTOR
OUTPUT DATASETS

Risk/Impact

Figure 5: Event tree scenario building tool, adapted from SNOWBALL (Zuccaro et. al., 2018).
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Annex C: EU Projects

1. BINGO - Bringing INnovation to onGOing water management – A better future under
climate change CORDIS.

2. BRIGAID - BRIdging the GAp for Innovations in Disaster Resilience, CORDIS.
3. CLARITY - Integrated Climate Adaptation Service Tools for Improving Resilience

Measure Efficiency, CORDIS, GitHub, Zenodo.
4. ClimateAdapt - Testing the limits and potential of evolution in response to climate change,

CORDIS.
5. ClimateFarmDemo - a European-wide network of pilot farmers implementing and

demonstrating climate-smart solutions for a carbon-neutral Europe, CORDIS.
6. ClimEMPOWER – Climate resilience in regional development, CORDIS.
7. CRISIS-ADAPT II - Climate Risk Information for SupportIng ADAptation Planning and

operaTion.
8. CRISTAL Project - Climate resilient and environmentally sustainable transport

infrastructure, with a focus on inland waterways, CORDIS.
9. DRIVER+ - DRiving InnoVation in crisis management for European Resilience: CORDIS.
10. ESPRESSO - Enhancing Synergies for disaster PRevention in the EurOpean Union, CORDIS.
11. EU-CIRCLE - A panEuropean framework for strengthening Critical Infrastructure resilience

to climate change, CORDIS.
12. FireLogue - Cross-section dialogue for Wildfire Risk Management, CORDIS.
13. KNOWING: Framework for defining Climate Mitigation Pathways based on Understanding

and Integrated Assessment of Climate Impacts, Adaptation Strategies and Social
Transformation, CORDIS.

14. MAGICA – Maximizing the synergy of European research Governance and Innovation for
Climate Action, CORDIS.

15. MAIA - Mapping and Assessment for Integrated Ecosystem Accounting, CORDIS.
16. NetworkNature - Advancing nature-based solutions together, CORDIS.
17. PLACARD: PLAtform for Climate Adaptation and Risk reDuction, CORDIS.
18. RAIN: RAIN will quantify the complex interactions between weather events and land-based

infrastructure systems, CORDIS.
19. RECONECT - Regenarating ECOsystems with Nature-based solutions for

hydro-meteorological risk rEduCTion, CORDIS.
20. RESCCUE - Resilient cities facing climate change, CORDIS.
21. Snowball - Modelling framework and tools supporting impact assessment from cascading

effects, CORDIS.
22. SOCLIMPACT - DownScaling CLImate ImPACTs and decarbonization pathways in EU

islands, and enhancing socioeconomic and non-market evaluation of Climate Change for
Europe, for 2050 and Beyond, CORDIS.

23. weADAPT – a dynamic, collaborative space for knowledge exchange on climate change
adaptation issues.
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http://www.projectbingo.eu/output
https://cordis.europa.eu/project/id/641739/reporting
https://brigaid.eu/
https://cordis.europa.eu/project/id/700699
http://v/
https://cordis.europa.eu/project/id/730355
https://github.com/clarity-h2020
https://zenodo.org/communities/clarity?page=1&size=20
https://climate-adapt.eea.europa.eu/
https://cordis.europa.eu/project/id/332138
https://cordis.europa.eu/project/id/332138
http://v/
https://cordis.europa.eu/project/id/101060212
https://climempower.eu/
https://cordis.europa.eu/project/id/101112728
https://www.crisi-adapt2.eu/
https://www.cristal-project.eu/
https://cordis.europa.eu/project/id/101069838
https://www.driver-project.eu/
https://cordis.europa.eu/project/id/607798
https://www.espressoproject.eu/
https://cordis.europa.eu/project/id/700342
https://www.eu-circle.eu/
https://cordis.europa.eu/project/id/653824
https://firelogue.eu/
https://cordis.europa.eu/project/id/101036534
https://knowing-climate.eu/
https://cordis.europa.eu/project/id/101056841
https://jpi-climate.eu/programme/magica/
https://cordis.europa.eu/programme/id/HORIZON_HORIZON-CL5-2021-D1-01-03/en
https://cordis.europa.eu/project/id/817527
https://cordis.europa.eu/project/id/817527
https://networknature.eu/
https://cordis.europa.eu/project/id/887396
https://www.placard-network.eu/
https://cordis.europa.eu/project/id/653255
https://rain-project.eu/about/
https://cordis.europa.eu/project/id/608166
https://cordis.europa.eu/project/id/776866
https://cordis.europa.eu/project/id/776866
https://toolkit.resccue.eu/
https://cordis.europa.eu/project/id/700174
http://snowball.meteoromania.ro/
https://cordis.europa.eu/project/id/606742
https://soclimpact.net/
https://cordis.europa.eu/project/id/776661
https://weadapt.org/
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Annex D: Data Management Statement

Table D 1: Data used in preparation of ICARIA Deliverable 1.3.

Dataset
name Format Size Owner and re-use

conditions

Potential utility
within and outside

ICARIA
Unique ID

N/A N/A N/A N/A N/A N/A

Table D 2:. Data produced in preparation of ICARIA Deliverable 1.3.

Dataset
name Format Size Owner and re-use

conditions

Potential utility
within and outside

ICARIA
Unique ID

N/A N/A N/A N/A N/A N/A
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