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Executive summary 

One of the main problems that climate change poses for the future, and even current human activities and 
well-being at the European level, is the impact it may have on the main sectors of economic activity and 
the critical infrastructure built around them. To meet this challenge as the climate emergency becomes 
already a reality, it is necessary to have good quality, updated state-of-the-art local-scale future climate 
information to enable the necessary measures to be taken to better adapt to the expected climate impacts. 
Climate change impact analysis is one of the strengths of ICARIA, displayed in one of the main and specific 
objectives detailed in ICARIA’s project, the obtaining and delivery of updated local climate change 
projections, explained in the Specific Sub-Objective 2 (SSO2 - Obtaining tailored scenarios for the case 
studies regions). To cover and justify this aim, this D1.2 deliverable provides detailed information on the 
outputs of ICARIA’s task T1.2 “Climate scenario building”. 

This document explains throughout its extension the different datasets used to perform the needed 
activities contemplated in T1.2, such as the use of ERA5-Land reanalysis and weather observations for 
climate characterization and verification procedures, or the different global and regional climate models 
utilized. These different input sources are used to generate the local climate change projections through 
a two-methods approach, by a statistical and a dynamical downscaling of different CMIP6 models, using 
both or just one method depending on the case study; methodologies which are correspondingly explained 
for the sake of clarity. This downscaling includes the analysis and interpretation of a set of main climate 
variables, like temperature, wind, rainfall or relative humidity. However, ICARIA’s main concern recalls the 
effects of climate hazards on the Metropolitan Area of Barcelona, the Salzburg Region and the South 
Aegean Region, for which it is required to define and project into the future a set of indicators and extreme 
events that would help with the modelling in WP2. These indicators are therefore defined in this document 
after a co-design and discussion amongst the partners involved.  

After all the necessary methodological explanations, at the end of the document, it is possible to find a 
detailed discussion of all the results coming from both main climate variables and their linked indicators 
and hazards. These results are discussed for both methodologies used and detailed in each of the case 
studies considered. Verification of outputs shows an adequate performance of both methodologies, and 
that results are trustworthy for all simulated scenarios, with uncertainties being properly assessed and 
explained. Both mean climate and extreme events simulations project coherent changes with the current 
warming trends, depicting a much warmer future where high temperatures and heat waves will cause 
severe impacts on society, and rainfall patterns will change towards more sparse and extreme events.  
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1.  Introduction 

This document presents the climate projections and hazard scenarios developed within the ICARIA project, 
which has received funding from the European Union’s Horizon Europe Research and Innovation program 
under Grant Agreement number 101093806. Specifically, this document corresponds to Deliverable 1.2 and 
is one of the results of Task 1.2 - Climate scenario building (WP1 - Project framework, climate scenarios and 
modelling inputs).  

1.1. ICARIA in short 
The number of climate-related disasters has been progressively increasing in the last two decades and 
this trend could be drastically exacerbated in the medium- and long-term horizons according to climate 
change projections. It is estimated that, between 2000 and 2019, 7,348 natural hazard-related disasters 
such as heat waves, forest fires, droughts, floods, or storms caused 2.97 trillion US$ losses and affected 
4 billion people worldwide. These estimates include compound and cascading events whose increasing 
frequency is a direct expression of ongoing climate change and related global warming (UNDRR, 2020; 
IPCC, 2021). For the future, by mid-century, the world stands to lose around 10% of total economic value 
from climate change if the temperature increases stay on the current trajectory, and both the Paris 
Agreement and 2050 net-zero emissions targets are not met (Guo et al., 2021). 

In this framework, the ICARIA Project (Improving ClimAte Resilience of crItical Assets) has the overall 
objective of promoting the definition and the use of a holistic asset-level modelling framework to achieve 
a better understanding of climate-related impacts produced by complex interactions, characterised by 
compound events and cascading effects, and the possible risk reduction provided by suitable, 
sustainable, and cost-effective adaptation solutions. 

Special regard is devoted to critical assets and services that are particularly susceptible to climate 
change as its local effects can lead to significant increases in the cost of potential losses for unplanned 
outages and failures, as well as maintenance – unless an effort is undertaken in making these risk 
receptors more resilient. Therefore, ICARIA aims to understand how climate might affect the life-cycle 
costs of these assets and services in the coming decades and to ensure that, whenever possible, 
investments in adaptation solutions are made upfront to face these changes. This requires planning that 
considers a comprehensive multi-hazard risk/impact assessment and the uncertainties associated with 
climate change, rather than reliance on models solely based on past events and single climate hazards 
[Barr & Nider, 2015]. 

To achieve this goal, ICARIA has identified has identified three Strategic Sub-Objectives (SSO) that are 
directly linked to the activities held in WP1 from which two T1.2 tackles 

● SSO2 - Obtaining tailored scenarios for the case studies regions; 
● SSO3 - Quantify uncertainty and manage data gaps through model input requirements and 

innovative methods. 
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1.2. Objective and Structure of the Deliverable 1.2 

In the current context where the changing climate determines a different future to be considered, weather 
and climate-related information become one of the core inputs of ICARIA. This information ought to be 
viable, accurate and reliable to guarantee that the best information is used as input for the project’s 
outcomes. This ensures that the project's results are based on the best data available and can effectively 
support effective decision-making amidst the dynamics of a changing climate. During this first part of the 
ICARIA project, T1.2 was aimed at producing up-to-date climate information, obtaining and providing post-
processed local-scale climate scenarios for the three case study regions, with their projected changes up 
to the year 2100, plus information on climate-related hazards from regional downscaled climate change 
projections. This work allows T1.2 to determine future variations in the main climate variables, with a special 
focus on extreme events frequency and intensity (e.g. heavy rains, drought, storm winds, storm surges, 
heatwaves). These outputs are of vital importance for ICARIA since they will construct the basis of the 
current and future climate conditions that will structure and feed the coming tasks. 

The present D1.2 document summarises these aforementioned results and the work needed for them to be 
obtained, having as the main objective to provide a comprehensive overview of the methodologies, 
datasets, and results, focusing on the expected climate dynamics and their related impact projection 
according to the hazard changes estimated. This primary objective of explaining the intricate processes 
undertaken to characterize climate inputs for ICARIA will help set the floor for their appropriate use in the 
next WPs. Some of the other objectives of this document are related to understanding and projecting 
climate impacts. 

● It delves into the utilization of specific datasets, such as ERA5-Land reanalysis and weather 
observations, forming the foundation for the analysis of climate conditions in Task 1.2.  

● The focus extends to elucidating the application of global and regional climate models, detailing 
techniques like statistical and dynamical downscaling. This provides insights into how these 
models contribute to the generation of local climate change predictions.  

● Acknowledging the importance of anticipating climate hazards, the document concentrates on 
defining indicators and extreme events. These definitions result from collaborative discussions 
among project partners, ensuring a comprehensive understanding of potential risks.  

● The core of the document is dedicated to presenting results from climate projections, with a 
meticulous analysis covering main climate variables like temperature, wind, rainfall, and relative 
humidity. This analysis extends to examining associated indicators and hazards, with a focus on 
specific case studies, namely, the Metropolitan Area of Barcelona, the Salzburg Region, and the 
South Aegean Region. 

This deliverable is a critical component in advancing ICARIA’s understanding of regional climate change 
and its potential repercussions. In order to achieve its objectives, the document is structured in a way that 
aims to flow from the input needed to start, going through the core of the methodologies applied or the 
analysis work undergone in ICARIA, and ending as the last step with the results.  

● Input data 
○ Explanation of the datasets used, such as the role of ERA5-Land reanalysis and weather 

observations. 
○ Discussion on the chosen models in climate characterization. 
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●  Future climate information 
○ Detailed insights into the statistical and dynamical downscaling methods, elucidating 

their individual contributions and the criteria guiding their selection. 
○ Comprehensive explanation of the comparison of both methods applied in the study. 

● Climate variables and hazards  
○ Presentation of the collaborative process employed in defining indicators and extreme 

events, and the rationale behind them and their relevance to the specified regions. 
○ Definition in detail of each indicator and where they apply regarding Trials and Mini-

Trials. 
●  Discussion of results 

○ Thorough analysis of the outcomes derived from the projections. 
○ Discussion of main climate variables, indicators, and hazards, with a focus on case 

studies for the Metropolitan Area of Barcelona, the Salzburg Region, and the South 
Aegean Region. 

● Conclusions 
○ Summarization of key findings. 
○ Implications of the results for the ICARIA project and broader implications for 

understanding regional climate dynamics. 

In addition, in the Annexes it can be found for more information: 

● Data Management Statement, with information on all used and produced datasets. 
● Verification and Uncertainty Assessment: 

○ Examination of the methodologies used to verify the outputs of both methodologies 
and its results. Impact on the uncertainty chain considered for final climate outcomes. 

● Definition of considered climate change indicators 

This structured approach ensures a clear and comprehensive exploration of the methodologies and results 
encompassed in Task 1.2, contributing significantly to ICARIA's overarching goals in climate research and 
impact projection. 
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2. Input data 

The work that has taken place during T1.2 to obtain future climate projections as output needs to be fed 
with a multiple set of data depending on the needs of each of the two downscaling methodologies that 
have been applied for ICARIA. This section will summarize this input information depending on the time 
scale that it covers and the purpose it has served. Mainly, two types of data are considered, that that 
covers or studies the historic climate, and the one that is used to peek at how climate change will affect 
past climate towards the future.  

2.1. Past climate information 

In order to analyze and understand where we are coming from, it is necessary to study and acknowledge 
what the climate has been like in the past and present days. The main purpose of this is to characterize 
the past climate and establish what was it like when most of present infrastructures and services were 
designed and built up, what were they designed to be resilient to; previously recorded extreme situations 
that led to damages and the definition of what today is categorized as hazard. This climate baseline is 
what is taken as a comparison point, established now for this ICARIA project in the years 1986-2014. 
Furthermore, in climate science, 30 years are considered to depict the mean climate state to smoothen 
short-term variability, as defined by the World Meteorological Organization (WMO1).  

Past information, as gained through observations and reanalysis data,  is used for verification purposes, 
checking when put in contrast to historical simulations how climate models behave, but also to feed 
statistical downscaling procedures. There are two main sources to obtain this information: reanalysis and 
weather observations.  
 

2.1.1. Reanalysis 

The most reliable validation for surface meteorological and climatological variables comes from data 
recorded by either manual or automatic stations, which are weather observations. Nevertheless, there are 
instances where the spatial distribution or temporal coverage of these stations is inadequate, leading to 
inconsistencies and inhomogeneities. Furthermore, it is important to note that observations present 
single-point conditions that can, but do not have to represent its surroundings. Recognizing these 
limitations, within ICARIA it was chosen to also use reanalysis data for verification and training purposes, 
as they offer improved spatial-temporal coherence and physical consistency.  

Climate reanalysis combines numerical weather models with assimilated observations, furnishing 
numerical and physical representations of recent climate conditions. These encompass estimates of 
atmospheric variables like air temperature, pressure, and wind at various levels, as well as surface variables 
such as rainfall, soil moisture content, ocean-wave height, and sea-surface temperature. Offering temporal 

                                                        
1  https://community.wmo.int/en/wmo-climatological-normals 
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and spatial coverage across the entire globe, these estimates span multiple decades or more [source: 
ECMWF2]. 

Since the case studies within ICARIA (Barcelona Metropolitan Area, South Aegean Region, Salzburg) are 
located inland or in coastal areas, not covering marine areas, the chosen atmospheric reanalysis for ICARIA 
is the European reanalysis ERA5-Land. This selection is based on several considerations: 1) it is developed 
by the European Centre for Medium-Range Weather Forecasts (ECMWF), whose primary operational area 
aligns with the geographical scope of ICARIA and is renowned for delivering top-notch weather forecasts, 
2) it represents the latest version of the European reanalysis, boasting enhanced spatial and temporal 
resolution compared to its predecessors, and 3) it is freely accessible for download through the Copernicus 
program's Climate Change Service (C3S, 2019)  

 
Figure 1. Example of the spatial representation of ERA5-Land reanalysis, representing a 30-year 

return period event for daily maximum temperature. (Source: C3S) 

ERA5-Land is the most recent reanalysis developed by the ECMWF. Released in July 2019, it provides 
hourly data with a temporal coverage that goes from 1950 to the present day (with a delay of about three 
months relative to the actual date), and it is still being expanded backwards as climate and computational 
science progresses. It only covers land terrain, but worldwide and with a global grid of  0.1°x 0.1 spatial 
resolution (9km approx. at mid-latitude). 

From all the variables available to download, only some of them were first identified to be used; mostly 
those related to the usual atmospheric observations needed from weather stations: 2m Air Temperature, 
Dew point Temperature, Total Precipitation, U Component of the Wind, V Component of the Wind. 

                                                        
2 https://www.ecmwf.int/en/research/climate-reanalysis 
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Table 1. Variables and their main characteristics selected from ERA5-Land. 

Variable Daily scale Comments 

Hourly 
temperature 

-Maximum 
temperature 
-Minimum 
temperature 
-Mean temperature 

Hourly temperature values allow us to obtain with great detail not only 
maximum and minimum daily temperature but also to obtain mean daily 
temperature with more significance than when obtained only with max and 
min values.  

Hourly  
dew point 

temperature 
 

 
-Maximum relative 
humidity 
-Minimum relative 
humidity 
-Heat Index 
 

Dew point Temperature is a variable that points at which temperature value 
the atmosphere would reach saturation and its moisture would start 
condensing in droplets. Therefore, it is an indicator of the net content of 
moisture of the atmosphere, being useful to get the Specific Humidity (q); 
moreover, the closest this value is to the actual temperature, the higher that 
Relative Humidity (RH) will be.  

Hourly 
precipitation 

 

24-h accumulation of 
precipitation 
 

Precipitation hourly values have been aggregated at daily intervals to obtain 
the 24-h accumulation of precipitation for each day to obtain total 
precipitation for each point and the maximum precipitation accumulated. 
Precipitation units were adapted from “m” to “mm” for a more intuitive use. 

Hourly wind 
(U and V 

components) 
 

Maximum daily mean 
wind 
 

In the case of wind, ERA5-Land available hourly data corresponds to both U 
and V wind components with the hourly mean values. Both components have 
been composed at hourly intervals according to the following rule: Wind 

=√(𝑈2 + 𝑉2) since U and V are vectorial components of the wind module. 

 

2.1.2. Weather observations 

As a basis for local point data, surface observations were gathered for all of ICARIA's pilot areas. This 
involved creating a comprehensive database with long-standing weather observations (ideally 30 years, 
or for verification purposes, at least 2.000 registers), thanks to the collaboration with various 
meteorological national centers or the open-access policies developed by them. In the cases where no 
data was freely available, other sources were sought such as historical records of WMO or those from the 
National Oceanic and Atmospheric Administration (NOAA) through its CDO3 tool, where over 80,000 
worldwide quality-controlled Weather Station summaries are freely available; this resource proves to be 
invaluable in regions lacking their weather information or where data is unavailable for various reasons. 

                                                        
3 https://www.ncdc.noaa.gov/cdo-web/ 
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Figure 2. Example of European stations' distribution of daily data summaries freely available at NOAA’s 
CDO tool. No data on Spain, but several can be retrieved for Salzburg and South Aegean case studies. 

To ensure data quality, observed data underwent thorough evaluation and treatment, with tests for 
inhomogeneities, outliers, anomalies or trend changes, discarding entries that did not meet minimum 
quality requirements. The outcome is a high-quality observed database for study areas where observed 
information could be collected. For more details about these procedures and quality results, please refer 
to Annex 2. 

Hereafter there is a resume of the weather observations retrieved for each CS, their number, location and 
respective source. 

The Barcelona Metropolitan Area (Area Metropolitana de Barcelona -AMB-) 

For the case study of AMB there are several sources of information available since in this area there are 
different entities at the local, regional and national scale collaborating in monitoring the weather. After 
tight collaboration and support of these entities for ICARIA and other research activities, observed data 
for AMB and its watersheds were sought from four distinct sources (refer to Figures 3 and 4). These sources 
include the Spanish Meteorological Agency (AEMet, Agencia Estatal de Meteorología), Catalan 
Meteorological Service (SMC, Servei Meteorologic de Catalunya), Spanish State Ports (PdE, Puertos del 
Estado), and Barcelona Cicle de l’Aigua (BCASA). 

1. AEMet has provided daily data for the Ter-Llobregat system, which is the hydrological area of 
influence of Barcelona, also covering the AMB. These data cover precipitation, temperature, 
relative humidity and wind.  

2. SMC has provided on-demand precipitation, temperature, relative humidity and wind hourly 
data for the metropolitan area, plus sub-hourly rainfall measurements. 

3. PdE provides data freely on its website. Hourly data on waves and daily data on sea level were 
retrieved in this case. 

4. BCASA data provided during the RESCCUE project for hourly precipitation for the AMB were 
reused. 

A summary of the available stations and the data sources is shown in Table 2, including temporal resolution 
and number of stations. It must be noted that the final number of useful stations shown in that table is 
calculated after all quality tests have been passed. 
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Table 2. Stations provided for the meteorological variables to study for AMB and its watersheds (Ter 
and Llobregat river basins). The variable name, its temporal resolution, the original number of provided 

stations, the final number of useful stations and the data source are shown. 

Variable 
Temporal 
resolution 

Number of 
provided stations 

Number of useful 
stations 

Source 

Precipitation Hourly 92 79 SMC 

Precipitation 1-minute 12 12 SMC 

Temperature Hourly 90 75 SMC 

Wind (mean & gust) Hourly 52 44 SMC 

Relative Humidity Hourly 84 79 SMC 

Precipitation Daily 95 95 AEMet 

Temperature Daily 78 78 AEMet 

Wind (mean & gust) Daily 14 13 AEMet 

Relative Humidity Daily 87 34 AEMet 

Precipitation Hourly 26 26 BCASA 

Waves Hourly 11 11 PdE 

Sea level Daily 1 1 PdE 

 

 

Figure 3. AMB CS stations' distribution for AMB area, depending on the types of variables collected. 
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Figure 4. AMB CS stations' distribution for river watersheds considered, depending on the types of 
variables collected. 

The South Aegean Region 
For the SAR case study the available information was scarcer, but still different sources of information 
were considered. The data for weather observations come from two main sources, the official Hellenic 
National Meteorological Service (HNMS, or EMY after Εθνι κή Μετεωρολογι κή Υπηρεσί α) and the weather 
portal Meteo.gr4.   

1. HNMS data is not freely available on their website, so data was retrieved from NOAA’s CDO tool, 
both from their Daily Summaries and the WMO data. Daily data for temperature, precipitation, 
wind and RH were obtained for the SAR areas of study.  

2. Meteo.gr is a portal that encompasses all the professional and official weather stations 
managed by the National Observatory of Athens (NOA5). This high-quality data was retrieved 
from monthly summaries and assembled together at a daily scale for temperature, 
precipitation, wind and RH variables. 

 
A summary of the available stations and the data sources is shown in Table 3, including temporal 
resolution and number of stations. It must be noted that the final number of useful stations shown in that 
table is calculated after all quality tests have been passed. 
 
 

                                                        
4 https://meteo.gr/about-meteo.cfm 
5 https://www.noa.gr/ 

https://meteo.gr/about-meteo.cfm
https://www.noa.gr/
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Table 3. Stations provided for the meteorological variables to study for SAR. The variable name, its 
temporal resolution, the original number of provided stations, the final number of useful stations and 

the data source are shown. 

Variable 
Temporal 
resolution 

Number of 
provided stations 

Number of useful 
stations 

Source 

Precipitation Daily 8 3 HNMS (NOAA) 

Temperature Daily 8 6 HNMS (NOAA) 

Wind Daily 8 7 HNMS (NOAA) 

Relative Humidity Daily 8 8 HNMS (NOAA) 

Precipitation Daily 2 2 HNMS (WMO) 

Temperature Daily 2 2 HNMS (WMO) 

Precipitation Daily 9 9 Meteo.gr (NOA) 

Temperature Daily 9 9 Meteo.gr (NOA) 

Wind (mean & gust) Daily 9 9 Meteo.gr (NOA) 

Relative Humidity Daily 9 8 Meteo.gr (NOA) 

 

Figure 5. SAR stations' distribution for Syros and Naxos islands, depending on the types of variables 
collected. 
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Figure 6. SAR stations' distribution for Kos and Rhodes islands, depending on the types of variables 
collected. 

The Salzburg Region 
Regarding the SLZ case study, there was plenty of available information covering the whole region in an 
open-access way, so, therefore, its obtaining was easier than in other cases. Besides, despite being SLZ 
region a large one to study and with enough data from the Austrian side, due to its location very close to 
the German border, also data from the German institute was considered to enrich the possible outcomes 
of the project. Therefore, for SLZ, two different data sources were considered to cover this case’s needs: 
weather data from the Austrian Central Institute for Meteorology and Geodynamics (ZAMG, after 
Zentralanstalt für Meteorologie und Geodynamik), and also from the neighbouring German Weather Service 
(DWD, from Deutscher Wetterdienst).  

1. ZAMG data is freely available on their website through an intuitive GIS platform. Data was 
downloaded covering sub-daily data for temperature, precipitation, wind and dew point 
variables. 

2. DWD data is also available for public download from their server using an FTP interface. Through 
these means, sub-daily data was collected for temperature, precipitation, wind and RH 
variables. 

 
A summary of the available stations and the data sources is shown in Table 4, including temporal 
resolution and number of stations. It must be noted that the final number of useful stations shown in that 
table is calculated after all quality tests have been passed. 
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Table 4. Stations provided for the meteorological variables to study for SLZ. The variable name, its 
temporal resolution, the original number of provided stations, the final number of useful stations and 

the data source are shown. 

Variable 
Temporal 
resolution 

Number of 
provided stations 

Number of useful 
stations 

Source 

Precipitation Hourly 47 44 ZAMG 

Temperature Hourly 47 43 ZAMG 

Mean wind Hourly 48 44 ZAMG 

Wind gust Hourly 3 3 ZAMG 

Dew point Hourly 45 44 ZAMG 

Precipitation Hourly 14 14 DWD 

Temperature Hourly 14 14 DWD 

Mean wind Hourly 2 2 DWD 

Wind gust Hourly 2 2 DWD 

Relative Humidity Hourly 14 14 DWD 

 

 

 

 

 

Figure 7. SLZ stations' distribution, depending on the types of variables collected. 
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2.2. Future climate information 

2.2.1. The IPCC 6th report. CMIP6, ESMs and SSPs 

The Intergovernmental Panel on Climate Change (IPCC) plays a crucial role in coordinating global efforts 
related to climate change. As a United Nations body, it produces comprehensive reports encompassing 
scientific, technical, and socio-economic information pertinent to understanding human-induced climate 
change risks, potential impacts, and adaptation/mitigation options. These reports significantly inform the 
United Nations Framework Convention on Climate Change (UNFCCC), the principal international treaty 
addressing climate change, which aims to stabilize greenhouse gas concentrations to prevent detrimental 
interference with the climate system. Widely recognized as an authoritative source, the IPCC has already 
published its Sixth Assessment Report (AR66); endorsed by leading climate scientists and governments, it 
consolidates advancements and studies from the scientific community.  

This IPCC’s AR6 sets the basis for the state-of-the-art  regarding climate change science. It works with 
the last version of the Global Climate Models (GCMs), clustered within the Coupled Model Intercomparison 
Project (CMIP7, Eyring et al., 2016). The CMIP is a cooperative initiative aimed at enhancing our 
understanding of climate change. Established in 1995 by the Working Group on Coupled Modeling (WGCM) 
under the World Climate Research Programme (WCRP), CMIP has significantly contributed to 
comprehending historical, present, and future climate changes within a multi-model framework. It 

                                                        
6 https://www.ipcc.ch/assessment-report/ar6/ 
7 https://wcrp-cmip.org/cmip-phase-6-cmip6/ 
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establishes standardized experiment protocols, forcings, and outputs. Implemented in successive phases, 
CMIP not only drives improvements in climate models but also supports global and national climate change 
assessments. In its latest (sixth) phase, CMIP has seen advancements up to the latest Earth System 
Models (ESMs) and also introduced new emission scenarios tailored to evolving needs for adaptation and 
mitigation strategies in the context of climate change. 

ESMs are coupled atmosphere-land-ocean (both hydro and cryosphere) general circulation models 
representing all components of the climate system and including the representation of the carbon cycle, 
allowing the interactive calculation of atmospheric CO2 or compatible emissions. It can also include other 
components like. chemistry of the atmosphere or dynamic vegetation for example, which is mostly solved 
through static input data (e.g. leaf area index per month). 

 

 

Figure 8. Key features of climate models and earth system models: ESMs gain complexity by 
considering the biological and chemical processes that feedback into the physics of climate. Source: 

©2013 Nature Education. 

Climate models utilize concentration scenarios derived from emissions scenarios to project future climate 
outcomes. Emissions scenarios depict plausible future substance emissions, like greenhouse gases and 
aerosols, based on factors like demographic, socio-economic development, land-use changes and 
technological evolution. The resulting climate scenarios from models offer plausible and simplified 
representations of future climate conditions, driven by internally coherent physical relationships. These 
scenarios are explicitly designed to explore the potential consequences of human-induced climate change, 
serving as input for impact models. 

As was aforementioned, this recent CMIP6 has revamped the consideration of future GHG concentration 
scenarios, replacing CMIP5's Representative Concentration Pathways (RCPs) with the Shared 
Socioeconomic Pathways (SSPs). The SSP approach displays a step forward from the RCPs as they 
provide a “story” on how society can evolve to the emission scenarios. Furthermore, the new 
generation of GCMs (CMIP6) provides a higher sensitivity, and higher spatial resolution and displays 
more severe impacts of climate change as anticipated by CMIP5. Besides, within the IPCC report AR6 
(Masson-Delmotte et al., 2021) it is also reported that CMIP6 models not only have higher spatial 
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resolutions than previous CMIP generations, but also show an increased ability to represent atmospheric 
circulation patterns. Therefore, there is a general understanding that using CMIP6 data provides additional 
information and should be used for further studies or risk assessments (see also EU-Taxonomy regulation, 
Annex A). 
 

The SSPs are scenarios of global socioeconomic changes projected up to 2100 that describe alternative 
socioeconomic developments. Each of the SSPs describes a potential line of evolution for humankind 
regarding different pathways like radiative forcing induced through the mitigation policies adopted, the 
adaptation strategies followed, the social concept for human development (peace, war, sustainability, 
fossil fuel extraction, economic inequality…). These potential pathways will define the way that the climate 
will behave in the future (Figure 9). 

 

 

Figure 9. Shared Socioeconomic Pathways (in the figure, OECD stands for Organizations of Economic 
Co-operation and Development). Source: figure adapted from O’Neill et al., 2017. 
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CMIP6 has established SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 as the main scenarios, also referred 
to as Tier 1. Unlike CMIP5 (RCP 4.5 and RCP 8.5), CMIP6 extends Tier 1 from 2 to 4 scenarios. In contrast 
to CMIP5 and RCPs, the improved CMIP6, following the Tier 1 SSPs, exhibit a more extensive spread in 
anticipated global mean temperatures thanks to a better understanding of the global climate system. 
These SSPs project temperatures surpass the range covered by the RCP ensemble (Meinshausen et al., 
2019). Figure 10 visually depicts the temperature variations associated with different SSPs, facilitating 
comparison with the RCPs. 

 

Figure 10: Comparison of illustrative projections of global mean surface temperature in the SSP and RCP scenarios. 
Global mean temperatures are shown relative to pre-industrial levels (1750), normalized to 0.92°C over the period 1995-
2014. Time series for the period 2000-2100 are shown for the nine SSPs relative to 1750, with bold solid lines indicating 
the highest priority SSP scenarios and thin dashed lines indicating other so-called "level 2" scenarios. The shaded 
areas indicate the 5% to 95% confidence intervals for each scenario. Bar graphs illustrate the mean 2081-2100 relative 
to 1750 for the nine SSPs (yellow shaded area with bar graphs), and the RCP scenarios, using the same MAGICC7.0 
configuration (light gray bar shaded area on the left) and an earlier MAGICC6 configuration used at the time of IPCC 
AR5 (light gray area on the right). Also shown is the likely range of temperature increase averages according to IPCC 
AR5 for that period, based on multiple lines of evidence (set of dark gray shaded bars on the right). Observational data 
for global mean surface temperatures, normalized over the same 1986-2005 period, are shown for Berkeley Earth (solid 
black), Cowtan & Way (Cowtan & Way, 2014) (long dashes), HadCRUT4 (Morice et al., 2012; Brohan et al., 2006) (small 
dashes), and NASA GISS (Lenssen et al., 2019) (dashes). Source: Meinshausen et al., 2019. 
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2.2.2. CMIP6 Global Climate Models 

Following prior scientific recommendations, ICARIA’s climate information is already based on CMIP6 
models and incorporating in its workflow the current SSPs. Therefore, the presented high-resolution future 
climate projections display a unique dataset. These models will provide the scenarios to be considered 
within the Risk Assessment and the design and development of all adaptation measures coming as ICARIA 
outcomes.  

As will be explained in the next section of this document, ICARIA follows a strong scientific approach by 
incorporating two different downscaling methodologies (statistical and dynamical) as a way to provide 
enough reliable climate information that allows a good understanding and representation of uncertainties 
related to climate projections.  

Nevertheless, these two approaches take as a primary input the same source of information: GCMs coming 
from the latest CMIP6. As a way to create the best possible evaluation of uncertainty, an ensemble 
approach is followed, and a total of 10 different CMIP6 models have been retrieved (10 models at a daily 
scale give us enough information for quantifying their intrinsic uncertainty in projecting changes). Each 
model has its particularities, so a thorough analysis of each model and documentation available was 
performed to select the 10 best ones for the European area of interest taken as a case study in ICARIA. 
The same analysis period was considered, from 01/01/1950 to 31/12/2014 and the 4 Tier 1 SSPs (ssp126, 
ssp245, ssp370 and ssp585) ranging from 01/01/2015 to 31/12/2100. The relation of the selected models 
is detailed in Table 5: 

Table 5. Information about the 10 climate models belonging to the 6 Coupled Model Intercomparison Project (CMIP6) 
corresponding to the IPCC AR6. Models were retrieved from the Earth System Grid Federation (ESGF) portal in 

support of the Program for Climate Model Diagnosis and Intercomparison (PCMDI). 

CMIP6 MODELS Resolution Responsible Centre References 

ACCESS-CM2 
1,875º x 
1,250º 

Australian Community Climate and Earth 
System Simulator (ACCESS), Australia Bi, D. et al (2020) 

BCC-CSM2-MR 1,125º x 1,121º Beijing Climate Center (BCC), China 
Meteorological Administration, China. Wu T. et al. (2019) 

CanESM5 2,812º x 
2,790º 

Canadian Centre for Climate Modeling 
and Analysis (CC-CMA), Canadá. 

Swart, N.C. et al. 
(2019) 

CMCC-ESM2 1,000º x 
1,000º 

Centro Mediterraneo sui Cambiamenti 
Climatici (CMCC). Cherchi et al, 2018 

CNRM-ESM2-1 1,406º x 
1,401º 

CNRM (Centre National de Recherches 
Meteorologiques), Meteo-France, Francia. Seferian, R. (2019) 

EC-EARTH3 0,703º x 
0,702º EC-EARTH Consortium EC-Earth 

Consortium. (2019) 
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MPI-ESM1-2-HR 0,938º x 
0,935º 

Max-Planck Institute for Meteorology 
(MPI-M), Germany. Müller et al., (2018) 

MRI-ESM2-0 1,125º x 1,121º Meteorological Research Institute (MRI), 
Japan. 

Yukimoto, S. et al. 
(2019) 

NorESM2-MM 1,250º x 
0,942º Norwegian Climate Centre (NCC), Norway. Bentsen, M. et al. 

(2019) 

UKESM1-0-LL 1,875º x 
1,250º 

UK Met Office, Hadley Centre, United 
Kingdom 

Good, P. et al. 
(2019) 
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3. Future climate information generation 

3.1. ICARIA approach. Downscalings and uncertainty analysis. 

When talking about the generation of climate information for projects that focus on climate risk and impact 
assessments as ICARIA, one of the main concerns that both climate scientists (as information providers) 
and sectoral partners or decision-makers (as information receivers) have to deal with is the inherent 
uncertainty of climate data. Climate Models (CMs), as stated above, are numerical models that represent 
the climate system with varying degrees of complexity and are based on the physical, chemical and 
biological properties of its components, their interactions and feedback processes. Therefore, each CM, 
depending on its inner architecture, simulates past and possible future climate states in a unique way, 
which translates into a degree of uncertainty depending on the CM selected. Additionally, the climate 
system has inherent inner variability due to the different time scales of the components involved (e.g. 
atmosphere days, ocean years) and related impacts on weather patterns, as well as other patterns such 
as ENSO or AMO. This is the reason why a 30-year period is selected for climate analysis. Furthermore, 
CMs simulate broad atmospheric circulation well but lack the resolution (around 100 km) for smaller-scale 
local phenomena. To address this limitation, downscaling techniques are employed, and this treatment of 
CMs further incorporates more uncertainty into the equation. Apart from model and climate-related 
variability and uncertainties, the emission scenarios used for driving future climate projections (SSPs) 
represent possible evolutions that cause possible climate states, adding another level of complexity and 
uncertainty in the interpretation and communication of climate model results and related (local) impacts. 

Efforts within the scientific community focus on addressing and quantifying uncertainties in climate 
simulations. The main way to address this is the ensemble strategy8, where either the same model is 
initialized with slightly different conditions or different models are used for computing the same SSP 
scenario, both approaches being done for CMIP6, thus combinations of models/SSPs/horizons for 
consistent projections are available (see past Figure 10). This approach displays the different outcomes 
and impacts for future climate states, clearly displaying the spread within the model simulations. Often 
the medians and quantiles are applied to gain a better knowledge and reduce uncertainty, enhancing the 
understanding of future climates for specific locations. Different procedures can then be applied from the 
ensemble outcome to further reduce the uncertainty (Wilcke et al. 2016), like selecting different ranges of 
change. 

In this sense, ICARIA has tried to tackle this uncertainty issue not only with the common (yet necessary 
and efficient) ensemble approach, but also not sticking to one but considering the two main sources of 
generation of information at the local scale available: dynamical and statistical downscaling. ICARIA has 
incorporated into its procedures these two downscaling methods that have worked in parallel during T1.2. 
Each of them assesses its own uncertainty with inner processes of verification through the use of different 
procedures and statistics, ensuring that the methodology introduces the least amount of uncertainty into 
the outcomes, thus reducing this factor of the equation (see Annex 3 for more detail). Once they are put 
together, this enlarges the perspective with two different sources, assessing therefore at the same time 
their uncertainty and the way it translates into future projections. Furthermore, the chosen approach 
enables the better representation of variability and possible future states while being time efficient.  

                                                        
8 https://climateinformation.org/knowledge-base/why-use-a-model-ensemble2/ 
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About their characteristics, in brief; statistical downscaling obtains empirical relationships between large-
scale variables from GCMs and high-resolution (surface) variables, allowing us to obtain very local results 
(like in a village) with less error than the dynamical one. Dynamical downscaling, on the other hand,  
increases the resolution of the GCMs over the region of interest with RCMs, taking into account local 
characteristics and altering physical processes, allowing us to obtain results in areas (like watersheds) 
where there are no observed data as well as a better representation of atmospheric processes. A more 
detailed summary of the pros and cons of each method can be found in Table 6. 

Table 6: Differences between dynamical and statistical downscaling. (Patz, et al., 2005) 

Dynamic  

Down 

scaling 

Benefits 

● Simulates climate mechanisms 

● No apriori assumptions about how current and future climate are related 

● ‘State of the art science’ tools 

● Continually advancing computers are making RCMs faster and cheaper to run 

● Encourages collaborations between climate scientists 

Draw 

backs 

● Expensive, in terms of computer resources and professional expertise 

● Results may be sensitive to uncertain parameterisations 

● Biases in the GCM (providing boundary conditions) may propagate to regional 

scale 

● Output from models may not be in a format well-suited to  analysis—additional 

data processing often required 

Appli 

cations 

● Studies associated with climate extremes and non-linear variability, as health 

● Data-poor areas 

● Connecting outcomes with climate processes 

● Include land-use impacts on climate or health outcomes 

Statistical 

Down 

scaling 

Benefits 

● Much cheaper in terms of computational time. 

● Builds on the statistical expertise common among researchers. 

● May correct for biases in GCM. 

● Allows for the assessment of climate results over a range of GCMs and emission 

scenarios. 

Draw 

backs 

● Assumes relationships between local and large-scale climate remain constant 

● Does not capture climate mechanisms 

● Not well suited to capturing variance or extreme events. 

● Very localized information 

Appli 

cations 

● Climate means, and variability with some limitations 

● Data-rich regions, especially Northern Hemisphere mid-latitudes 

● Compare present with projected climate in a consistent framework 

● Test a range of inputs 

● Variable scales, down to individual measurement sites 

It could then be said that having similar results from both methodologies at the same location cast 
reliability onto ICARIA’s main climate outcomes, allowing case studies and other partners to use 
trustworthy information on their respective tasks. If they largely differ, this has to be taken into account 
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since it means that the future state is highly uncertain and depends on the model used. Further, this could 
relate to cascading uncertainties that could  develop throughout the rest of the project. In the next 
sections, a more in-depth description of each one will be done for the statistical (FICLIMA) and dynamical 
(AIT) methodologies. 

It must be noted that, due to ICARIA’s schedule and the time needs of the dynamical downscaling, 
this is only performed for SAR and SLZ CS, whereas AMB will only count on statistical results. 

For the presentation of the results concerning future climate projections in ICARIA, a three-time-periods 
strategy has been taken to represent them depending on the fairness in time: short-term (2021-2050), 
mid-term (2041-2070) and long-term (2071-2100). The baseline (or historic period) is aligned with the 
IPCC AR6 also considering CMIP6 historical experiments, being set to the 1981-2010 30-year period. 

 

3.2. Statistical downscaling - FICLIMA 

The statistical downscaling methodology applied in ICARIA by FIC, named FICLIMA (Ribalaygua et al. 2013), 
consists of a two-step analogue/regression statistical method which has been used in national and 
international projects with good verification results (i.e.: Monjo et al. 2016). The first step  (see Figure 11) is 
common for all simulated climate variables and it is based on an analogue stratification (Zorita et al. 1993). 
An analogue method was applied based on the hypothesis that ‘analogue’ atmospheric patterns 
(predictors) should cause analogue local effects (predictands), which means that the number of days that 
were most similar to the day to be downscaled was selected. The similarity between any two days was 
measured according to three nested synoptic windows (with different weights) and four large-scale fields 
using a pseudo-Euclidean distance between the large-scale fields used as predictors. For each predictor, 
the weighted Euclidean distance was calculated and standardised by substituting it with the closest 
percentile of a reference population of weighted Euclidean distances for that predictor. This method is a 
good method for reproducing nonlinear relationships between predictors and the predictands, but it could 
not be used to simulate values outside of the range of observed values. In order to overcome this problem 
and obtain a better simulation, a second step was required. 

 

Figure 11. Key features of the first step of the FICLIMA statistical downscaling. 

For this second step (see Figure 12), the procedures applied depend on the variable of interest. To 
determine the temperature, multiple linear regression analysis for the selected number of most analogous 

https://docs.google.com/document/d/1xBnBHiXSgP0jS6tfIhr7j4Rrl2Ae7TVR/edit#bookmark=id.4ev95cb
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days was performed for each station and for each problem day. From a group of potential predictors, the 
linear regression selected those with the highest correlation, using a forward and backward stepwise 
approach. 

For precipitation, a group of m problem days (we use the whole days of a month) is downscaled. For each 
problem day we obtain a “preliminary precipitation amount” averaging the rain amount of its n most 
analogous days, so we can sort the m problem days from the highest to the lowest “preliminary 
precipitation amount”. For assigning the final precipitation amount, all amounts of the m×n analogous days 
are sorted and clustered in m groups. Every quantity is finally assigned, orderly, to the m days previously 
sorted by the “preliminary precipitation amount”.  

For wind or relative humidity, the second step is a transfer function between the observed probability 
distribution and the simulated one using the averaged values from the n = 30 analogous days. Particularly, 
a parametric bias correction was performed to the time series obtained from the analogue stratification 
(first step). In order to estimate the improvement of this procedure, the bias correction was also applied to 
the direct model outputs. 

 
Figure 12. Key features of the second step of the FICLIMA statistical downscaling, with graphic 

details of the work done for each type of variable. 

This second step done at a daily scale with an inner thorough verification procedure is essential and the 
main differentiating process of FICLIMA method. It extends beyond mean values to include extremes and 
covers all time scales, including daily intervals. With the verification it can be proven If the method 
correctly simulates changes from one day to the next, indicating an effective capture of the underlying 
physical connections between predictors and predictands. These physical links remain relatively 
consistent, even in the face of climate change (as opposed to purely empirical relationships that might 
shift). In essence, this approach theoretically addresses the primary challenge in statistical downscaling 
known as the non-stationarity problem. This problem questions the stability of predictor/predictand 
relationships established in the past, probing whether these relationships will persist in the future. 
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3.3. Dynamical downscaling - Regional Climate Models 

 
General Circulation - or Global Climate Models (GCMs) represent all components of the climate system 
(atmosphere, ocean, land, ice sheets) and their interactions and thus display a great tool for analysing 
past and future climate conditions. To integrate all components and still have meaningful computation 
times, the current spatial resolutions of GCMs are in the order of ~80 - 200 km. Therefore, one 
temperature, precipitation etc. value representing the mean of the gridcell (e.g. 80 km x 80km) is 
received. To overcome the coarse spatial resolution, regional climate models (RCMs) have been used 
for dynamical downscaling intensively over the past. Their spatial resolution is in the range of 2 - 25 km 
and temporal resolution is often hourly. RCMs are initialised by GCMs, meaning that the boundary 
conditions are provided by the GCMs and only atmospheric processes are explicitly resolved for the 
respective domains. Within RCMs local characteristics such as topography, land-use, vegetation type 
etc. are represented with greater spatial detail, emphasising their impact on physical processes. These 
processes are represented within the climate models through so-called schemes (e.g. microphysics 
schemes which resolve the physical processes and parameterizations related to cloud formation and 
large-scale precipitation patterns). Depending on the spatial resolution of the applied models, physical 
processes can either be resolved or need to be parameterized if they are subgrid-scale (e.g. convective 
processes are only resolved explicitly at resolutions  < 4km, Prein et al., 2015).  

  
Figure 13: Schematic depiction of regional climate modelling and application to VIA studies. VIA = vulnerability, 

impacts, and adaptation; RCM = regional climate model; GCM = global climate model. Source: Giorgi, F. 2019. 

Within ICARIA, two different RCMs were initialized with two GCMs for the SSP scenarios SSP126 and 
SSP585 to account for uncertainties within the models and better depict the variability within possible 
future climate conditions (Table 7). 

First, the CCLM domains, set-up and status of simulations are depicted, afterwards the same is done 
for WRF.  
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Table 7. GCMs and RCMs used and applied for the dynamical downscaling in ICARIA. 

GCM RCM 

EC-Earth3-Veg (Döscher et al., 2021) COSMO-CLM (CCLM, Rockel et al., 2008)  

MPI-ESM1-2-HR (Müller et al., 2018 ) WRF (Skamarock et al., 2019) 

 

The produced dataset of dynamically downscaled climate projections depicts valuable insights into 
future climate states at a high resolution. As it is based on CMIP6 model data, it is one of the first 
openly available. As Central Europe is covered by two RCMs at a spatial resolution of 12 - 15km2, the 
benefit of this data goes far beyond the project and the case studies. Furthermore, setting up long term 
climate simulations at the very high resolution of 2 - 5 km² (even convection permitting) offers valuable 
insights of great importance.  

However, the (computational) resources needed for dynamical downscaling are extensive and are 
unfortunately prone to issues. Failure of hardware has caused a delay in finalizing the simulations, as 
well as the complexity of convection permitting simulations (CCLM). The status of the simulations at 
time of deliverable:  

 Table 8. Current status of simulations at the time of deliverable is: 

Domain CCLM 
historical 
ERA5 

CCLM - 
SSP126 

CCLM- 
SSP858 

WRF 
historical 
ERA5 

WRF - 
SSP126 

WRF - 
SSP858 

Europe 1981 - 2010 1981 - 2100 1981 - 2100 1981 - 2010 1981 - 2100 1981 - 2100 

SBG 1981 - 2010 1981 - 2100 1981 - 2100 1981 - 2010 1981 - 2100 1981 - 2100 

AEG  1981 - 
2060* 

1981 - 
2060* 

1981 - 2010 1981 - 2100 1981 - 2100 

* these runs are still being finalized. Their delay doesn’t impact the project’s overall approach as their 
results will be ready for hazard models within WP4 in time.  

 
3.3.1. CCLM simulations ICARIA 

The chosen climate model COSMO-CLM Version 4.8_19 (Roeckel et al., 2008, Doms et al., 2011) is a 
mesoscale non-hydrostatic regional climate model, maintained and further developed by the COSMO 
Consortium, an open international network of scientists of the Climate Limited-area Modelling-
Community (CLM-community, www.clm-community.eu) based on the weather prediction model COSMO 
(Steppeler et al., 2003) of the Deutscher Wetterdienst. It is based on the primitive equations specifying 
the compressible flow in a moist atmosphere and physical processes like radiation, turbulence, land 
surface processes and convection are represented. Further, the governing equations are integrated 
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using the mode-splitting approach to split up the equations into a longer model time step for processes 
on larger time scales such as advection and the tendencies from the physical parameterizations, and 
into a short time step for the fast sound wave processes (Baldauf et al., 2011). 

Within CCLM the following domains were simulated at the specified spatial resolution:  

0.1° (~12km):    0.02° (~2km):    0.02° (~2km):   

 

Figure 14: CCLM simulation domains within ICARIA 

All simulations have hourly output and are performed until 2100. The AMB area was not simulated due 
to time constraints and the fact that it is covered within the KNOWING9 project.  

The following namelist parameters applied were: 

● 2 time-level Runge-Kutta scheme: 3rd-order Runge-Kutta scheme used by Wicker and 
Skamarock (2002) 

● Smagorinsky diffusion 
● horizontal advection: Bott 2nd order finite-volume scheme with Strang splitting 
● semi-Lagrangian advection of the moisture variables 
● scheme for horizontal diffusion: Monotonic 4th-order linear scheme with orographic limiter 
● grid scale precipitation:  Graupel scheme with prognostic cloud water, cloud ice, and graupel 
● Vertical Turbulent Diffusion: old ijk-behaviour of the turbulence scheme 
● include horizontal turbulent diffusion: Prognostic TKE-based scheme 
● parameterization for evaporation of bare soil, BATS version 
● parameterization for transpiration by vegetation, BATS version 
● diagnosis of snow-cover fraction: parameterization depending on soil water equivalent 
● subgrid-scale convection 
● convection parameterization: Shallow convection based on Tiedtke 
● include lake processes 

The numerical models used for dynamical downscaling compute the atmospheric state and its change 
at each model internal timestep, therefore, all parameters needed for these physical processes are part 
of the modelling equations and, depending on the settings, can also be part of the output. For instance, 

                                                        
9 https://knowing-climate.eu/ 
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the output file of WRF/CCLM contains ~100-400 parameters. A list of the most relevant output 
parameters for each output timestep (hourly) are: 

2D (x,y): 10m wind, humidity, 2m temperature, surface pressure, cloud cover, precipitation, 
minimum/maximum temperature, incoming radiation 
3D (x,y,z): wind, temperature, pressure, humidity, cloud cover in different heights 

 
3.3.2. WRF simulations ICARIA 

The second model applied is the commonly used WRF model (version 4.3.3), a state-of-the-art 
mesoscale numerical weather prediction system designed for both atmospheric research and 
operational forecasting applications. It features two dynamical cores, a data assimilation system, and 
a software architecture supporting parallel computation and system extensibility. The model serves a 
wide range of meteorological applications across scales from tens of meters to thousands of 
kilometers. It is jointly developed by various institutions and allows the user to choose from different 
physical parameterization schemes. The domains simulated by WRF are displayed in Figure 15. 

  

Figure 15: WRF domains: spatial resolution D01: 15 x 15km2, D09 & D11: 5 x 5km2, D10: for specific 
events at 1km2 

For the simulations performed within ICARIA, the following namelist parameter settings were chosen 
for all case studies:  

● microphysics: new Thompson scheme with ice, snow and graupel processes suitable for high-
resolution simulations. 

● long- and shortwave radiation: new version of RRTM added in Version 3.1. It includes the 
MCICA method of random cloud overlap.. Since V4.2, the CO2 value is replaced by a function 
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of the year: CO2(ppm) = 280 + 90 exp (0.02*(year-2000)), which has about 4% of error for 
1920s and 1960s, and about 1 % after year 2000 when compared to observed values 

● Land surface: Noah-MP (multi-physics) Land Surface Model: uses multiple options for key 
land-atmosphere interaction processes. Noah-MP contains a separate vegetation canopy 
defined by a canopy top and bottom with leaf physical and radiometric properties used in a 
two-stream canopy radiation transfer scheme that includes shading effects. 

●  planetary boundary layer: Mellor-Yamada Nakanishi and Niino Level 2.5 PBL (5). Predicts sub-
grid TKE terms. 

● cumulus parameterization: Grell Freitas scheme that tries to smooth the transition to cloud-
resolving scales 

The numerical models used for dynamical downscaling compute the atmospheric state and its change 
at each model internal timestep, therefore, all parameters needed for these physical processes are part 
of the modelling equations and, depending on the settings, can also be part of the output. For instance, 
the output file of WRF/CCLM contains ~100-400 parameters. A list of the most relevant output 
parameters for each output timestep (hourly) are: 

2D (x,y): 10m wind, humidity, 2m temperature, surface pressure, cloud cover, precipitation, 
minimum/maximum temperature, incoming radiation 

3D (x,y,z): wind, temperature, pressure, humidity, cloud cover in different heights 
 

3.4. AI weighting 

 

State-of-the-Art: AI-based ensemble weighting 

To improve the accuracy of model predictions, meteorologists combine different models. Within the 
ensemble, different models can be assigned with a weight to consider regional characteristics and to 
correct for model bias Merrifield et al. [2020]. The weighting scheme is typically provided by 
experienced meteorologists, but recently AI-based methods have been explored. So far, only a limited 
amount of literature exists on ML-enhanced ensemble weighting, particularly within the meteorological 
and geophysical domains. Consequently, ML-aided weighting for ensemble forecasting remains largely 
unexplored, presenting a promising method for future research. To date, only two notable contributions 
have been identified in this area.  

Sun et al. [2021] introduced an ML-Optimized Ensemble (ML-OE) method to forecast the seasonal 
occurrence of tropical cyclones. Assuming linearity between the statistical models, the authors 
performed a simple least squares regression problem augmented by regularization terms. Additionally, 
to directly solve the inversion problem, they employed a simple gradient descent scheme for the linear 
regression problem. Different ensemble subsets were considered as well. In certain cases, the authors 
found that an ML-OE leads to a better or similar prediction accuracy than the simple averaging scheme. 
Most notably, the ML approach demonstrated superior accuracy for poorly resolved response variables, 
surpassing individual model predictions and average ensemble forecasts.  

https://aitonline.sharepoint.com/sites/WorldDomination-ICARIA/Shared%20Documents/ICARIA/AI%20based%20weighting/ICARIA_AI%20based%20weigthing_workflow.docx#_msocom_1
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In contrast to this approach, the ensemble weighting method presented by Sengupta et al. [2020] is a 
deep learning approach. There, a Bayesian neural network was constructed to weight an ensemble of 
models predicting the monthly average total ozone column. Bayesian networks model train parameters 
of probability density distribution instead of scalar weights. This offers, due to the inherent statistical 
nature, interpretability and UQ capabilities. By integrating prior knowledge through data transformation 
and network design, Sengupta et al. exemplified a physics-informed ML scheme. Their approach 
enables the capture of spatio-temporally varying model accuracy, thereby enhancing ensemble 
forecast performance. 

  

Methodology 

In order to find the optimal weighting between the 2 GCM and 2 RCM models, we will follow a classical 
machine learning workflow, i.e. we will: 

● Define a research question 
● Select which data is used for training, validation and testing  
● Decide about the input and target parameters 
● Choose a model architecture 
● Train and validate a first model and fine-tune if necessary 
● Evaluate the model performance 

Research Question and Metrics 

Which combination of physical models is optimal for predicting a single parameter such as e.g. 
temperature or a set of e.g. temperature, pressure, humidity and wind in the specified spatiotemporal 
domains? Can ML-based weighting schemes match, or even outperform, state-of-the-art non-ML 
weighting schemes?  

It is essential to define here according to which metrics we consider the model weights found as 
optimal. A useful approach could be to use for this the meteorological verification e.g. with respect to 
the ERA5 reanalysis. 

Considered spatiotemporal domain 

In order to cover both regions of interest, i.e. the Salzburg area and the Aegean region, and to capture 
also large-scale weather effects, we will focus on middle Europe. The considered time frame for model 
training should be limited to the one considered for the developed GCM and RCM models. 

Selection of data for training, validation and testing 

The data available comprises the model output from 2 GCMs and 2 RCMs, with spatial resolutions 
ranging from 100 km to 2-12 km. The GCMs provide daily output, while the RCMs offer hourly output. 
Each model provides an output for approximately 380 parameters for each time step. Together, with the 
domain experts we will decide which subset of parameters is essential for answering the research 

https://aitonline.sharepoint.com/sites/WorldDomination-ICARIA/Shared%20Documents/ICARIA/AI%20based%20weighting/ICARIA_AI%20based%20weigthing_workflow.docx#_msocom_6
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question and whether all time steps should be considered. This input parameter reduction and input 
feature importance analysis can also be achieved or supported by traditional dimensionality reduction 
methods such as the principal component analysis. This subset is then considered as the input 
parameters for the machine learning model.  The target output is four values lying on a four-dimensional 
simplex, with additional constrain that sum up to one. These four outputs are associated with weights 
attributed to the four physical models for the climate projection. We will further investigate how the 
output can be reshaped to allow for both geographic and temporal diverging weight sampling. We expect 
a sensible trade-off between enhanced performance and computational cost. 

Physics-informed ML methods in the form of knowledge-driven data-transformation should also be 
applied. Following the example of Slater et al. (2023), the time arrow can be transformed to a helix, 
which captures annual periodicity and allows the quicker emergence of seasonal effects without losing 
the information of long-term climate trends. 

While the exact temporal extension of training, validation and testing set needs to be determined, we 
require a significant overlap between the testing set of the ML approach and the traditional approach, 
to address the above-defined research questions. 

Model architecture and loss function 

The general proposition is that we start with as simple model as possible and increase the complexity 
if required.  Due to the data availability supervised and unsupervised ML methods can be applied. The 
ML architecture used by Sengupta et al. is based on a Bayesian Neural Network. The input to the 
network consists of the spatiotemporal domain considered in the respective climate projection 
scenario. Here, it is ensured that geolocation (coordinates) do not contain any discontinuities and that 
the temporal input reflects cyclic behaviour to account for seasonality. Additionally, all data are scaled 
to ensure numerical consistency. The output is fed forward through several fully connected Bayesian 
layers. The connections between the nodes of the neural network are modelled as normal distributions. 
The training consists of finding the optimal parameter space of means and variances to optimize the 
underlying loss function, i.e., to find the best prediction of past climate with weighted climate models. 
Due to the high dimensionality of the problem, not every inference strategy can be used. The authors 
propose, therefore, maximum a posteriori sampling. Under certain assumptions, this is equivalent to 
minimizing a computable loss function, which is discussed below. 
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Figure 16: sketch of ML modelling approach 

 

Sampled values from the last layer in the network are subjected to a softmax activation function to 
obtain the target physical model weights. The choice of the softmax function is important but not 
unique; it ensures, on one hand, that all weights lie in the interval [0,1], and on the other hand, that the 
sum of all weights equals one. In addition to the weights, a bias term and a heteroscedastic aleatoric 
noise are retrieved from the network. The climatological prediction consists then of the sum over 
weighted physical models, corrected by the bias and noise term. The loss function used in the training 
process consists of several terms. The first one is the square distance between climatological prediction 
and recorded climate data, scaled by the respective variance term. The second and third terms are 
derived from the inference strategy and essentially minimize the uncertainty of the sampling 
distributions while converging towards the mean parameterizing the normal distribution. 

Due to the availability of the code on GitHub, and the thoughtful design, we propose a similar approach 
while also exploring different ML techniques. As for Sengupta et al., the high dimensionality of the input 
and output space is a limiting and time-consuming factor in applying different ML strategies, which is 
a challenge that will be addressed throughout.  

Model performance evaluation 

To assess the effectiveness of the ML weighting strategy, we will compare it against simple baselines, 
such as individual model performance or an evenly distributed weight allocation among the models. 
Additionally, we will define various spatiotemporal subsets to evaluate the significance of each model 
in different regions. This analysis will provide valuable insights that can be reviewed, verified, and 
discussed by climatologists within the consortium, potentially enhancing our understanding of model 
performances in specific regions. As the model expands to assign weights for different meteorological 
variables across space and time, the performance analysis can be extended to the predicted variables. 
The final validation process will involve a validation by meteorological experts.  
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3.5.  Comparison of both methodologies.  

The characteristics of the applied methodologies (statistical and dynamical) have been described 
above and display the base for future comparison within the two regions covered by both, SLZ and SAR. 
Further, the GCMs used for dynamical downscaling were also part of the ensemble of the statistical 
one, which is crucial.  

The approach behind the comparison is to depict the strengths and weaknesses of both, maybe also 
depending on the specific region so not uniformly applicable but rather dependent on f.i. available 
observation data, land use and land cover, topography etc. - characteristics of the investigated region 
impacting the quality of the projections.  

The fact that within one project consortium experts of both “worlds” are present is rare and offers great 
potential. Thus, the output of statistical downscaling (spatial extrapolated fields and point point 
locations) will be compared to the dynamical downscaled output fields and similarities, as well as 
discrepancies assessed. Additionally, the characteristics of compound events in both methods will be 
analysed to assess if their occurrence or intensities depend on the chosen method (for two GCMs both 
methods are available). 

3.6. Next steps after D1.2: local downscaling of SSP scenarios; ARSINOE 
methodology 
 

The objectives of this section are to set the basis of the methodology that will be applied later on in 
ICARIA to define and detail SSP projections to the adequate territorial reality as well as to include SSP 
scenarios into a local/region scale projection model. 

To achieve these objectives a method using projected land use maps has been selected. This would 
allow it to more accurately represent the territorial reality of the selected climate projections by 
including SSP (Shared Socioeconomic Pathways) narratives in the projections. It means adjusting the 
potential socioeconomic outcomes to a more precise assessment of the impacts evaluated in the 
ICARIA project. 
 
The proposed method is inspired by the ARSINOE10 project method of socioeconomic downscaling and 
the work of (Huber García et al., 2018). This method is based on downscaling the selected SSP for the 
case studies using present and future projections of local land use and GDP information.  
 
The first step requires the appropriate selection and characterization of the Shared Socioeconomic 
Pathways (SSP) of interest. It is proposed to select the main SSP considered as representatives of the 
circumstances of the case study. Another factor to characterise and select the correct SSP is 
considering various adaptation strategic plans for each case study. This helps to standardise the 
criteria used to select the SSP and increase awareness of the potential results, thereby evaluating the 
accuracy of this method. 

                                                        
10 https://arsinoe-project.eu 
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All the ARSINOE case studies selected the SSP1-26 and SSP3-70:SSP1-26, considered an optimal choice 
since its lower boundary remains within (or at least close to) the scenario proposed by the EU-Green 
Deal targets. The SSP3-70 was recently considered as an upper boundary climate and socioeconomic 
future that (i) contrasts the “green” scenario and thus opens/covers a broad feature space of possible 
pathways; (ii) is fairly close in warming potential to the CMIP5 RCP8.5; (iii) is scientifically new (one of 
the pilots) and publishable“. The objective of this phase is then to choose the SSP that best suits the 
future socioeconomic scenarios for each case study. With that being said the SSPs selected for the 
current project are yet to be determined. 
A second step would be to select the different factors/descriptors to characterise the different 
scenarios. These criteria consider two important approaches: 
 

1. A qualitative selection of factors/descriptors that would establish the partial relations between 
the possible results in both scenarios.  

2. A quantitative estimation of the parameters that describe the previous factors is used to 
characterise the SSP to be able to include them in the aforementioned projections. 
 

These factors/descriptors are chosen through the consensus of a set of multidisciplinary experts 
considering strategic plans, data availability in the different study cases, and other criteria that are 
found relevant within the literature. A selection of the parameters that are going to be included in the 
projection model will also be carried out based on the state of the art and availability.  
 
Once these scenarios have been described and characterised, the following step is setting up a model 
that allows to project the change of a desirable characteristic. The model considers the effects of the 
previously chosen parameters to constrain the possible outcomes of our simulation inside the limits of 
the chosen SSP. 
 
There are existing GIS-based models, like the CLUEMONDO or iCLUE (Verweij et al. (in prep.)), proposed 
in the ARSINOE project, that will be evaluated to be applied in ICARIA for land use time-scaled 
projections. These tools help to incorporate local SSP into the outcome of the projections. These 
models require the following inputs: 
 

1. Evaluation of the Factors/Descriptors chosen as Drivers regarding the variation in land use. 
2. Evaluation results of the land use variation (change detection). Historic land use maps (i.e: 

CORINE European project maps). 
3. An estimation of the easy-of-change value for each of the land uses in each case study area. 

This value will be used to fine-tune the model outcomes and calculate the probability of an area 
changing its land use.  

4. Land use demands.  
5. A base map from the first point of the time series. 
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                              Figure 17:  iCLUE model inputs. Source : (Huber Garcia et al 2018 )  

 
This model will calculate the probability of a land use change to occur in a location using three main 
variables: 
 

1. Ease-of-Change 
2. Suitabilities for each type of land use by selecting the most significant drivers using a stepwise 

regression model to estimate the overall suitability for each land sector 
3. Overall land use demands 

 
The model will use these probabilities to generate land use map projections. Given that this method will 
apply to the chosen SSPs, there will ultimately be one map for each scenario. Upon completion of these 
simulations, the next step involves evaluating the quality of the simulations. When examining the 
results of the CLUEMONDO or iCLUE model, the following aspects must be considered: 
 

1. Persistence simulated correctly (correct rejections) 
2. Persistence simulated as change (false alarms) 
3. Change simulated as the change to wrong category (wrong hits) 
4. Change simulated correctly (hist) 
5. Change simulated as persistence (misses) 

https://drive.google.com/open?id=1w5FNW6QH0ZdOC9_uFSXl4hyY3qX7qOeH
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   Figure 18: Validation results at multiple resolutions. Source : (Huber Garcia et al 2018).  

 
Once it has been stated that the quality of the simulations is satisfactory, it will be possible to proceed 
with the use of these projected maps to estimate certain characteristics of interest, such as water 
demand, for the drought’s impact assessments, or the estimated  flood damages. This follows the 
method used in (Huber Garcia et al., 2018).  
 

Figure 19: Validation results at multiple resolutions. Source : (Huber Garcia et al 2018).  

 

The applied method  overlapped the layer of domestic water demand per unit above the projected urban 
pixels layer, being able to estimate afterwards the domestic water demand per urban pixel area. 

https://drive.google.com/open?id=1w5FNW6QH0ZdOC9_uFSXl4hyY3qX7qOeH
https://drive.google.com/open?id=1w5FNW6QH0ZdOC9_uFSXl4hyY3qX7qOeH
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This kind of estimation is particularly useful for ICARIA’s trial assessments since it would allow 
comparison between present scenarios and the results obtained from both projected scenarios. 
 
Although the proposed method does not focus on impact assessment, it can be adapted to compare 
adaptation scenarios in the ICARIA project, establishing tailored socioeconomic projections. 
 
Several indicators can be used to provide relevant information from which to assess the impact of the 
different hazards. They will be linked to the land use information from the iCLUE or CLUEMONDO model 
coming from the aforementioned authors (Huber García et al.,2018 and Verweij et al. (in prep.)), to 
provide more accurate information to reflect better the different possible outcomes taking into account 
the effect of the socioeconomic scenarios selected. 
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4. Climate variables and hazards  

4.1. Climate variables 
 

In order for the partners in T1.2 to start developing the future climate projections to be used during ICARIA, 
it was necessary to first determine the climate variables that would need to be modelled. These main 
climatic variables (or drivers) will depict the potential and likely conditions of the future climate, and will 
suppose the basis for obtaining the rest of the indicators that derive from hazards for the case studies. 
However, for them to be defined, the process ought to be done the other way round; this is, prior 
identification of hazards detected in the case studies should be done, and with them an analysis of what 
variables cause them is performed. This task was partially done during the proposal stage of ICARIA, and 
fully rounded through the collaboration of stakeholders mainly in T1.1 and summarized in D1.1. 

Therefore, the main climatic drivers were identified according to the potential hazards enumerated in D1.1 
for each CS. Their importance level was estimated considering each hazard risk as established by CS, also 
considering if they belong to the Trial or Mini-trial phase of the ICARIA project. The climate variables 
identified here, shown in Table 9, correspond to the final outcome that will be delivered and both displayed 
in results and used for the posterior indicators; variables needed for their calculation depend on each 
methodology (statistical or dynamical), and these considerations are exclusive to their procedures and 
therefore not detailed here. 

Table 9. Climate variables related to the identified potential hazards and their importance according 
to the Trial or Mini-trial previous evaluation (see D1.1). 

Variables 
Identified 
hazards 

AMB SLZ SAR 

Trial Mini-trial Trial Mini-trial Trial Mini-trial 

Temperature 
(max, min and 

mean) 

Heatwave, 
drought, forest 

fire 
 X  X X  

Precipitation  Flooding, drought X  X   X 

Wind 
(mean and gust) 

Storm winds, 
heatwave, 

drought, forest 
fire 

 X X  X  

Relative 
Humidity 

Drought, 
heatwave,forest 

fire 
 X  X X  

Sea level Storm surges X     X 

Wave height Storm surges X     X 
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(significant and 
maximum) 

4.2. Hazards and extreme events indicators 

Following the previous section, the identification of hazards (D1.1) achieved by the CS and the climate 
variables obtained allowed for a more detailed discussion of the specific indicators for extreme climate 
events that could, directly or through cascading effects, produce the apparition of those feared hazards. 
The identification and/or definition of these indicators is key in order to develop their corresponding 
projections for future changes and assess this way the expected impacts and vulnerabilities regarding 
ICARIA’s CS. The definition of extreme events indicators is crucial for ICARIA as it feeds other related tasks 
from WP1 and WP2, more specifically T1.1 (impact modelling), T2.1 (hazard dynamics) and T2.2 (multi-hazard 
modelling). With this aim, several online meetings were held amongst ICARIA’s technical partners and also 
each case facilitator, gathering in the end: FIC, AIT, AQUATEC, UNEXE, DEMOKRITOS, PLINIVS, UNINA, and 
indirectly AMB and representatives from SLZ and SAR.  

These meetings allowed for a thorough technical discussion and the comparison of different needs and 
contexts which led to an effort made by ICARIA to synthesize and establish common indicators for the 
project. These gathered the needs of each case study but also prioritized the best scientific approach to 
stay within the “extreme” climate definition, so that they could apply to all three CS and also be replicated 
elsewhere, easing ICARIA’s work through a common approach for the hazard modelling. This was the ideal 
scheme, but given the different climates considered in ICARIA and the diverse resilience that their 
inhabitants have to certain climate conditions, some indicators are case-specific under a direct request 
from the CS. 

In any case, a threefold approach was taken to identify and define the agreed indicators.  
 

● Some of the indicators, due to their nature (like extreme rainfall or wind), were defined upon a 
certain amount of Return Periods (RP) whose changes would be evaluated in the future, 
assessing therefore potential increases or decreases in the intensity. These RP were 
established as 1, 2, 5, 10, 20, 50, 100 and 500 years. Their calculation was, from the statistical 
downscaling, based on the best fit to 2, 3 and 4-parametric versions of Gamma, Weibull, 
Classical Gumbel, Reverse Gumbel and Modified Log-logistic distributions (Monjo et al. 2014, 
2016). Within the dynamical downscaling the change in intensities for the different RPs is 
estimated. 
 

● Other indicators were approached defining or combining quantiles that, being based on the 
respective climate, would be thus escalable. This is the case for Heatwaves or Cold days. 
 

● The rest of the indicators were taken from already existing definitions applied worldwide with 
multiple applications, like Tropical Nights, SPEI or FWI. 

 
For the sake of simplicity and clarity, a summary table of all the indicators agreed upon is facilitated below 
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in Table 10 and Table 11. For a more detailed description of each indicator and the mathematical basis 
behind it, please refer to Annex 4. 

 

Table 10. Summary of selected thermal and precipitation indicators, grouped aligned with the main 
hazards they feed. “nd” = number of days; “ne” = number of events. 

Index/name Short description Source Variable Units Threshold 

Thermal indicators 

TX90 / TX10 Warm/cold days Zhang et al. (2011) TX nd 90 / 10% 

HD Heat day ICARIA TX nd > 30 °C 

EHD Extreme heat day ICARIA TX nd > 35 °C 

TR Tropical nights Zhang et al. (2011) TN nd > 20 °C 

EQ Equatorial nights AEMet 2020, ICARIA TN nd > 25 °C 

IN Infernal nights ICARIA TN nd > 30 °C 

FD Frost days Zhang et al. (2011) TN nd < 0 °C 

Max consec 
Max spell length for above thermal 

indicators 
ICARIA - nd - 

Nº events 
Number of above thermal indicators 

events 
ICARIA - ne > 3 days 

TXm Mean maximum temperatures ICARIA TX °C - 

TNm Mean minimum temperatures ICARIA TN °C - 

TM Mean temperatures ICARIA TA °C - 

HWle Heatwave length ICARIA TX nd 3d > 95% TX 

HWim/HWix Mean and maximum heatwave intensity ICARIA TX °C 3d > 95% TX 

HWf Heatwave frequency ICARIA TX ne 3d > 95% TX 

HWd Heatwave days ICARIA TX nd 3d > 95% TX 

HI - P90 Heat Index (percentile 90) NWS (1994) TX, RH °C 
TX>27 °C, HR> 

40% 

UTCI Universal Thermal Climate Index Bröde et al. (2012) 
TA 

 RH, W 
- - 

UHI Isla de calor (BCN) anual y estacional AMB, Metrobs 2015 T °C TM1-TM2 > 0 °C 

Precipitation indicators 

R20  Number of heavy precipitation days Zhang et al. (2011) P nd  >20 mm 

R50, R100 Days with extreme heavy rain AMB et al. (2017) P nd 
>50mm 

>100mm 

Ra Yearly and seasonal rainfall relative change ICARIA P mm ≥ 0.1mm 

IDF - CCF IDF Curves - Climate Change Factor 
Arnbjerg-Nielsen 

(2012) 
P - ≥ 0.1mm 

Forest fire indicators 
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Mean FWI Mean Canadian FWI in fire season Stock, B.J. et al. (1989) 
RHn, TX, 

P, W 
. 

June- 
September 

Very High FWI Very High Canadian FWI Stock, B.J. et al. (1989) 
RHn, TX, 

P, W 
nd FWI > 38 

Table 11. Summary of selected drought, oceanic and wind indicators, grouped aligned with the main 
hazards they feed. “nd” = number of days; “ne” = number of events. 

Index/name Short description Source Variable Units Threshold 

Drought indicators 

CDDx Maximum dry spell duration Zhang et al. (2011) P nd < 1 mm 

CDDm Mean dry spell duration Zhang et al. (2011) P nd < 1 mm 

SPI 
SPI  

of 1, 3, 6, 12, 24 & 36 months 
McKee et al. (1993)  P, TA - ≥ 0.1mm 

SPEI 
SPEI  

of 1, 3, 6, 12, 24 & 36 months 
Vicente-Serrano et al.  

(2010) 
P, TA - ≥ 0.1mm 

Oceanic indicators 

SS Storm surge Bryant et al. (2016) MT cm  - 

OW Significant/maximum wave height ICARIA WH m - 

Wind indicators 

EWG Extreme wind gusts ICARIA W km/h - 

Legend: 
 WH:      Wave Height  P: precipitation  W:  Wind  MSL:  mean sea level   MT:  meteorological tide 
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5. Discussion of results 

This section presents the outcomes of the ICARIA project's downscaling methods, which offers a detailed 
glimpse into future climate change scenarios for the three considered case studies. As was 
aforementioned, ICARIA has used a twofold approach to obtaining climate input with two different 
downscaling processes. Through rigorous analysis, the two studies have generated insights into 
anticipated shifts in climate variables and specific indicators. From temperature projections to 
precipitation trends and extreme indicators like heatwaves or extreme rainfall days, the analysis offers 
valuable insights into potential future climatic conditions. These findings shed light on the nuanced shifts 
anticipated in our environment, providing crucial information for ICARIA’s policymakers, researchers, and 
stakeholders alike. Exploring these results is expected to deepen our understanding of the potential 
impacts of climate change on various aspects of our planet, paving the way for informed decision-making 
and proactive adaptation strategies. 

 

5.1. Statistical downscaling outputs 

Throughout this section, a detailed discussion of results from FICLIMA downscaling will be done. This 
discussion will be split into three parts, one per CS, and in each one a more specific summary will be 
performed to briefly explain the outcomes of each group of variables and indicators. This will depict what 
the future climate, along with each considered SSP, may look like in the future compared to the one we 
grew and lived in. After the discussion, a thorough analysis of the outcomes is summarized and presented 
in a table for a quick review of expected results for each indicator and each SSP and period considered.  

 

5.1.1. Discussion for the Barcelona Metropolitan Area - AMB 

IMPORTANT: In this section are discussed the results for the AMB area, considering all the stations 
(AEMet, SMC and BCASA) falling within the administrative region. Changes will be mainly discussed in what 
refers to changes in median values; due to the geographical heterogeneity (shore and inland, valley and 
mountain) of stations, some indicators might be registered or expected in the future in some points, but 
might not be explicitly mentioned. A more detailed summary with uncertainty thresholds is done in the 
next 5.1.2 section. All summary figures will be shared and available to partners for detailed consultation, 
and the posterior spatial treatment (TIF) of results might help in identifying in ICARIA’s DSS, once made 
available, the particularities of results in the geographical extension of the CS. 

— 

Based on the locally generated climate change scenarios for this case study, and following what was 
expected in the current warming scenario, temperature rises are anticipated across all scenarios, 
timeframes, and seasons. However, and linked to the non-linear behaviour of rainfall with warming 
scenarios, no notable alterations in precipitation are foreseen across any scenario. As a wrap-up, an uptick 
in aridity is almost certainly linked to rising temperatures, particularly during the summer months. 
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Thermal indicators 
Regarding the group of variables and indicators linked to temperature, as they were defined in the previous 
4.2 section, results show an absolutely clear trend towards increasing temperature in the future, with 
worse scenarios as we consider worse SSPs. 

About the temperature variable, maximum temperature increases are expected to range from 1.7 to 2-3 
degrees Celsius by mid-century considering median values as depicted in future scenarios, and from 2.5 
up to 4.5 by the end of the century in the SSP2-4.5 and SSP5-8.5 respectively (see Figure 20 as example). 
The mean annual temperature and minimum annual temperature are expected to increase approximately 
the same as the maximum temperatures in absolute values. Great significant rises are expected in all 
scenarios, periods of the year, and time horizons. 

 

Figure 20. Expected evolution of mean maximum temperature for AMB stations. 

Taking percentiles, Cold/Warm days (P10/P90 of maximum temperature, respectively) are expected to 
notably decrease/increase in the future, since taking the historic period as a reference in a percentile 
indicator causes that a warming climate boosts the number of days above P90 and reduces those below 
P10. Changes show that from the reference ~34 days/year, Cold days will reduce by 50-60% at mid-
century, and about 75-90% by 2100. Warm days on the contrary would double (+100% or +35 days) by 
mid-century and increase about 150-200% (60-88 days) by 2100.  

The change in maximum temperature will lead to changes in the indicators defined from it. As a matter of 
fact, Heat Day (Tx > 30ºC) and Extreme Heat Day (Tx>35ºC) will significantly sharply increase. Heat days, 
according to projections, would go in AMB from 19 historic days to a range of 50 to 70 days a year by 2050, 
and of more than 90-100 days by 2100 in worst-case scenarios (see Figure 21). Extreme Heat days would 
follow this trend, even being truly rare nowadays in AMB due to the tempering effect of the Mediterranean 
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(0.2 historic days a year), a warming sea would lose that effect, and AMB would see a significant increase 
of +5 days in average by mid-century and +20-30 by late-century in worst cases. 

 

The increase in minimum temperatures will lead to a significant large decrease in the number of frost days 
during winter by the end of the century, from a historical median of 7 days to a reduction by half or even 
the totality of days in worst-case scenarios (SSP3-7.0 and 5-8.5). This change in minimum temperature is 
also expected during the summer season, and will also lead to significant increases in the occurrence of 
tropical nights (Tmin>20ºC) in all scenarios and time horizons, with a stronger and larger trend the closer 
to the end of the century. Historic values fall around 48 nights (median), and significant increases are 
already expected in the earliest time period (around +29 in consensus), increasing steeply up from +36 to 
even around +80 in worst cases, being expected therefore even ⅓ or more of nights (up to 150) per year 
above 20ºC by the year 2100 (Figure 22). This trend translates too to equatorial nights (Tmin >25ºC) and 
infernal nights (Tmin >30ºC). Equatorial nights were barely suffered in AMB in past times (~1 night), but 
will follow the tropical night trend with increases of +5 nights before 2050, and from +10 in a more 
optimistic scenario (SSP1-2.6) up to even +60 nights in SSP5-8.5. Infernal nights were not registered yet, 
but from mid-century some stations are expected to start suffering them, and regarding the median by the 
end of the century 4 infernal nights are expected to happen every year, with values of +10 in some areas. 

 

Aside from the previous discussion, and in order to better understand and assess further impacts of 
previous indicators, two derivatives were applied, calculating the maximum number of consecutive days of 
each previous indicator, and also the number of events (considered as ≥3 consecutive days) expected 
throughout the year. Regarding maximum consecutive days, Heat Day could go from a typical 8-day 
streak in historic times to around 20 days by 2050 or more than 55 days by 2100. Extreme Heat Days, 
practically not seen, could chain 3 up to more than 13 days in a row by late-century. Frost days will 
practically disappear, while Tropical Nights could go from a current streak of 28 days up to an average of 
60 up to 120 tropical nights in a row in the worst case. Equatorial nights and Infernal nights haven’t 
happened consecutively, but could appear around 20 consecutive nights by mid-century or from 25 to 
even 60 by late-century for equatorial nights, while infernal nights are not expected to happen in a row 
until the end of the century (up to 3 days). Concerning the number of events, Heat Day would go from a 
reference of 1.5 events a year to 3 during the century (the increase is expected in the number of 
consecutive days). The same happens for Extreme Heat Day, with almost 1 up to 2 events a year by 2100. 
About Frost days, there was no event in the past and none is still expected in the future. Tropical night 
events were about 3 per year, and no change is expected (in the number, but yes in the duration of them). 
Equatorial night events were not registered in median (some stations have them though), but could appear 
in general by mid-century and about 1-2 by late-century. No infernal night events are expected so far. 
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Figure 21. Expected evolution of heat days for AMB stations. 

 

 

 

Figure 22. Expected evolution of tropical nights for AMB stations. 
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Additionally, the increase in temperatures will affect the occurrence of extreme weather events such as 
heat waves, which are one of the more impactful events due to their effects on human health, 
infrastructure or the environment. Therefore, the length, intensity, and frequency of heat waves must be 
analysed to characterize these extreme weather events. The heat wave definition was created for ICARIA 
considering several climate and scientific conditions, and ended up being: a temperature-related episode 
of at least three consecutive days where the weather observations considered register maximum 
temperatures above the 95% percentile of their daily maximum temperature records for the months of 
June to September of the 1981-2010 period. 

Heat wave impacts are expected to increase significantly since the projections indicate a very relevant 
rise in the intensity, length, and number of events in most scenarios by mid-century and end-century.  

Coming from a definition based on percentiles, it is expected, and it is seen, that for the historical period 
the number of heat wave events is ~0.5. This is especially relevant to assess the magnitude of the change. 
By mid-century, the number of expected heat wave events increases to +3 on an average year, and up to 
+4 in the median by late-century from the SSP2-4.5 to SSP5-8.5 (Figure 23). The average heat wave 
length is expected to go from 4 days in past times up to 7-10 by mid-century, and increase significantly in 
the most pessimistic scenarios by late-century, with an average duration 10-14 days in moderate scenarios 
up to 19 days per event in the SSP5-8.5 (Figure 24). Also, increments are expected in the maximum heat 
wave intensity, set in the median at 33.4ºC for the AMB. By the early-century no significant change is 
expected, but by the mid-century and late-century, the change is around +1ºC up to +2.4ºC in most 
pessimistic scenarios. The annual number of days that agree with the definition of maximum temperatures 
higher than the 95th percentile but skipping the 3-row days (named heat wave days) would also 
significantly rise from a historic 3.5 days to more than 20 (up to 40) by 2050, or even to 20 up to 80 by 
2100. 

 

Figure 23. Expected evolution of the number of heat waves for AMB stations. 



 

61 

 

 

Figure 24. Expected evolution of the duration of heat waves for AMB stations. 

 

For the case of the AMB, some tailored variables have been calculated on-demand, mainly about thermal 
comfort. One of them is the commonly used Heat Index (HI), which results from a combination of 
temperature and RH about certain thresholds and represents the body's thermal sensation at some point. 
Heat Index represents that for certain T/RH values, the heat stress that a body can suffer, dangerous at 
some point, has nothing to do with the actual temperature that is being recorded.  

For the AMB, reference HI oscillates around 31.5ºC, and is expected to significantly increase in the future 
due to rising temperatures and the constant input of humidity from an even warmer Mediterranean. In this 
regard, increases of +2.5-5ºC are foreseen by mid-century, while further rises of +5-9ºC in worst-case 
scenarios are feasible by late-century (refer to Figure 25 for more detail). 

Another one, just for the AMB case, is the UTCI. The UTCI index shows a significant increase in its values 
in the last half period of the twenty one century. It needs to be remarked that, unlike for HI where there is 
a threshold for the calculation (Tx>25ºC), the UTCI has been obtained for all year-long, and so values don't 
seem to be so extreme as if they were obtained just for summer months. Also,  the lack of temporal 
resolution limits the ability of the index to analyse the thermal stress typical of the summer months, and 
which is evident during the central hours of the day (high humidex factor). However, the increments 
analysed can be used to analyse future changes with a high level of confidence (Figure 26). UTCI will range 
from its historical mean value of 13.1ºC, up to values between 15 and 19ºC in the last quarter of this century. 
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Figure 25. Expected evolution of the percentile 90 of Heat Index for AMB stations. 

 

Figure 26. Expected evolution of UTCI index for AMB observatories. 

 

Another indicator in this regard is the Urban Heat Island effect indicator, which was obtained from an 
already existing methodology comparing Barcelona Vila Olímpica and Barcelona Airport stations. In this 
case, Figure 27 shows differences between these two stations with each point referring to one year within 
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the period plotted instead of one station. Historical data shows a UHI of around 2.2ºC, while projected 
changes foresee an expected significant slight decrease in UHI, with reductions of around -0.5ºC by 2050 
and of even -1ºC by 2100 in SSP3-7.0 and SSP5-8.5. These changes are also seen in seasonal UHI; the 
strongest UHI is that of winter, with a historical value of 2.8ºC, but will see the weakest reduction, of around 
-0.5ºC (coherent with winter UHI). The strongest reduction is expected in summer, with a historical value 
of 1.9ºC and a reduction of -1º even up to >-2.4ºC in SSP3.70 and SSP5.85, which would suggest a reverse 
situation with rural areas warmer than urban ones, an interesting result prone to discussion. This could be 
explained by changes in the behaviour of minimum temperatures in the outskirts maybe due to a reduction 
in the cooling effect in rural coastal areas of a much warmer Mediterranean. Another factor is the reduction 
of human activities in Barcelona city centre in part due to a decrease in the population, as also explained 
in Martin-Vide, J., & Moreno-Garcia, M. C. (2020). or in AEMet11. 

 

Figure 27. Expected evolution of annual mean UHI for AMB (Vila Olímpica - Airport). 

 

 

 

Precipitation indicators 
Regarding precipitation indicators, different ones have been obtained depending on the needs of the AMB 
CS. In this regard, some indicators were designed to measure changes in annual precipitation while other 
indicators were more focused on extreme rainfall events. In this sense, in summary, no significant change 

                                                        
11https://aemetblog.es/2020/09/27/el-cambio-climatico-aumentara-la-intensidad-de-las-islas-de-
calor/ 
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is expected in yearly precipitation so far nor in days above specific extreme thresholds, but an increase in 
precipitation intensity at the sub-hourly scale is foreseen. 

In more detail, about annual precipitation indicators, yearly cumulative precipitation as well as seasonal 
cumulative precipitation do not display any changes towards the future, as can be seen in Figure 28. 
Small increases or decreases appear, but are not significant enough to be considered due to the 
uncertainty seen.  

In what refers to extreme rainfall events, some indicators of these events are obtained for days above 20, 
50 and 100mm. In the three cases, the changes with respect to historical observed days (6, 1 and 0.1 
respectively) are not significant enough to be considered. 

Studying sub-daily precipitation also allows us to know the behaviour of rainfall at these time scales, which 
in Mediterranean climates often poses the biggest threats for extremely torrential downpours. In this 
regard, IDF curves and CCF index were obtained for sub-hourly rain at 1, 2, 5, 10, 20, 50, 100 and 500 years 
respectively. 

 

Figure 28. Expected evolution of the relative change in annual cumulative precipitation for AMB stations. 
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Figure 29. Example of the CCF for AMB. Y-axis represents the CCF, X-axis the duration in minutes. Each line 
represents the CCF for a specific period (15-40, 41-70, 71-00 for the red, green and blue respectively). 

 
Results for CCF (which encompasses IDF as well), shown in Figure 29, are interpreted as values greater 
than 1 indicating an increase in the IDF rates. As the forecast examples show, they are expected especially 
in the worst-case scenarios (SSP3-7.0 and 5-8.5), and significantly in the low duration scales (<10 min in 
the X axis) and for the last period of the century (2071-2100 or the blue lines). This translates as changes 
foreseen of about +15-25% in the intensity of rainfall. Although positive CCF values are observed in 
Barcelona, the increase in drought duration in Southern Europe may partially counteract the increase in 
the maximum water-air capacity itself, especially in the lowest return periods, resulting in lower CCF 
values. 

Drought indicators 
In what concerns to drought, two types of indicators were agreed on in their calculation, those related to 
dry days (dry spell duration), and those with anomalies in precipitation/evapotranspiration (SPI & SPEI). 
The first type was defined as a “dry day” a day with precipitation registered below 1mm, and two indicators 
were calculated: mean length of dry spell and maximum length of dry spell.  About the Mean length of dry 
spell, for the AMB the historical yearly value was around 10 days, with no significant changes expected in 
the future with the exception of SSP3-7.0 and SSP5-8.5 by the end of the century, with slight significant 
increases of +1-2 days. Regarding the Maximum length of dry spell, the historical reference value is 38 
days, and although small increments are foreseen in the future, none of them is significant except for 
SSP5-8.5 in late-century, with a +4.7 change. 
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Figure 30. Expected evolution of a 36-month length SPEI Thornthwaite indicator for AMB stations. 

Regarding the SPI and SPEI indexes; due to their definition, historic value is always set to 0, and expected 
changes differ from one to another. For SPI, no significant changes are expected by mid or late century in 
any scenario or time period since no significant change in mean accumulated precipitation is foresight in 
this regard. However, for SPEI, since it includes changes in temperature for the estimation of 
evapotranspiration, changes are do expected. Following an increase in temperature and no changes in 
rainfall, SPEI values are projected to decrease significantly for all time periods and scenarios, more steeply 
towards the end of the century, with decreases from -1 down to -3 in SPEI-12, and from -1.5 down to almost 
-4 for SSP5-8.5 in SPEI-36 (Figure 30). Similar reductions are expected in other monthly-aggregated SPEI 
(1,3,6,24).  

Forest fire indicator 
For the case of the hazards concerning forest fires, the FWI was used as an indicator to evaluate the 
likelihood of extreme forest fires developing when started. This index merges different conditions of 
humidity, temperature and wind to asses the evolution of fires. In this regard, projections show that the 
mean FWI between June and September (risk season) for the AMB is about 16 in historic period, and all 
scenarios agree in future increments in this value, of around +1-2 depending on the scenario, with a 
significant increase of around +2-4 by 2100 (Figure 31). For the extremest situations, the number of days 
with FWI>38 (Very High risk) is set at 7.5 in the past, and will increase around +2-3 days up to a significant 
+6 for worst case scenarios by 2100. 
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Figure 31. Expected evolution of mean FWI between June and September for AMB stations. 

 

Oceanic indicators 
Regarding storm surges, the results show no changes or even a decrease in the meteorological tide for 
some of the scenarios compared to the historical period (1981-2010) (Figure 32). However, some 
peculiarities of these projections should be pointed out. As specified below in Annex 4, the storm surge is 
calculated by decomposing the total sea level into three components: the astronomical tide, the mean sea 
level, and the meteorological tide. This example does not take into account the rise in sea level or the 
harmonics of the astronomical tide, but it does take into account the synoptic storm surge or the 
meteorological tide, which is expected to decrease (especially in the worst case). This can be explained by 
the decrease in the number of synoptic or large-scale storms in the Mediterranean basin (movement of the 
jet stream towards northern latitudes), although the decrease is not particularly remarkable (decreases 
from 10 to 20% could be expected) and they can be overcompensated by the rise in mean sea level (see 
Figure 33) or the significant wave height, among other factors. This is compatible with a future scenario in 
which most of the days are expected to have less wind and consequently fewer waves, and at the same 
time more very windy peaks as a result of deeper convective storms, Medicanes or Derechos. Therefore, 
the pattern of expected variations must take into account the high uncertainty cascade effect produced 
by the accumulation of uncertainty from the different sources (observations + method + models). 
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Figure 32.  AMB storm surge projections (in cm) for each SSP and a return period of 25 years 
considering all CMIP6 models. 
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Figure 33.  AMB Mean sea level projections (in meters) for each SSP considering all CMIP6 models. 

 
The Maximum Wave Height is not expected to change significantly in the future. This null variation is 
especially obvious in the first three scenarios (SSP1-2.6, SSP2-4.5 and SSP3-7.0). Just a lighter decrease 
can be appreciated in the worst-case scenario (SSP5-8.5) for the median of all cases (Figure 34), for similar 
reasons as the meteorological tide previously mentioned.  
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Figure 34.  AMB Maximum Wave Height projections (in meters) for each SSP and a return period of 25 

years considering all CMIP6 models. 

 

The situation of the Significant Wave Height projections is pretty similar. In fact, the statistical variations 
of their significant portions (percentiles 25 to 75) are negligible for the whole models and scenarios. Just 
for the scenario SSP5-8.5 can be interpreted as a future decrease but lighter than other variables such as 
meteorological tide or maximum wave height.  
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Figure 35.  AMB Significant Wave Height projections (in meters) for each SSP and a return period of 25 

years considering all CMIP6 models. 

 
 

Wind indicator 
Wind is one of the most difficult meteorological variables to be studied when dealing with future climate 
change variations. Due to its own nature, a result of multiple factors such as orography, local thermal 
variations, pressure gradients, or other weather phenomena, the future study of wind is not as 
straightforward as temperature could be, and future changes in pressure centres and other atmospheric 
patterns that determine wind’s strength and direction is still today prone to high uncertainties. Besides, 
the remarkable lack of wind observations or their poor quality with respect to those from temperature or 
precipitation also hinders the procedures in statistical downscaling. On the other hand, as it can be seen 
in Annex 4 (Table A3.1), only 5 (out of 7) models have passed validation tests for the methodology and are 
used to produce these outcomes. It is good advice to take into account the aforementioned difficulty of 
working with the wind when interpreting the next results. 

 

In this sense, wind gusts have been modelled for the future since it is a variable that poses a higher risk 
and interest for ICARIA, and is included in other multiple indicators. The future evolution is studied for 
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percentiles since it doesn’t respond to a normal distribution and mean values are meaningless. For the 
AMB, Percentile 99, as well as other percentiles (P80, P90 or P100) don't seem to show any change in its 
expected behaviour in the future. 

 

If we translate this into return periods, we can observe little variation in all scenarios. In general, there is a 
consensus that the maximum gusts will generally decrease (Figure 36), considering the limitations of the 
method itself, and as previously mentioned for the storm surge. Despite this, in the intermediate scenarios 
there is the possibility of observing an increase in maximum gusts. This is more evident in higher return 
periods. 

 

Figure 36. Results for RP of 20 years for wind gust projections and AMB stations. 
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5.1.2. Summary of results for the Barcelona Metropolitan Area - AMB 

Table 12-1. Summary table for expected changes in future thermal climate variables and extreme indicators from FICLIMA statistical downscaling in AMB. 
Changes are expressed as the difference in “median(percentile 10/percentile 90)” of future expected values for each SSP and time period with respect to 
the historical median reference value for the period 1981-2010. Units are expressed in the INDEX column (nd = number of days, ne = number of events). 

INDEX 

81-10 2021-2050 2041-2070 2071-2100 

HIST. 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

Thermal indicators 

TX90 
 (nd) 

33.8 +24.1 
(16.1/31.9) 

+27.0 
(18.9/34.8) 

+26.3 
(18.2/34.1) 

+26.2 
(18.1/34.0) 

+37.6 
(29.5/45.4) 

+44.4 
(34.3/52.2) 

+51.0 
(39.9/58.8) 

+56.2 
(44.1/64.0) 

+38.2 
(29.9/46.0) 

+58.0 
(47.9/67.8) 

+74.8 
(63.7/85.6) 

+88.3 
(77.2/99.1) 

TX10 
 (nd) 34.2 -9.4 (-13.5/-

5.6) 
-10.2 (-14.3/-

6.1) 
-10.6 (-14.6/-

5.8) 
-12.5 (-17.7/-

7.1) 
-15.6 (-

20.4/-11.2) 
-17.4 (-22.0/-

12.8) 
-20.5 (-

25.3/-15.7) 
-21.7 (-27.3/-

16.1) 
-17.2 (-22.3/-

12.4) 
-22.7 (-

27.3/-18.2) 
-28.0 (-

33.2/-22.8) 
-30.1 (-

35.3/-24.9) 

HD 
(nd) 

19.2 +22.8 
(15.2/29.8) 

+24.9 
(17.3/31.1) 

+26.4 
(19.0/33.7) 

+27.0 
(18.8/33.4) 

+30.1 
(18.6/42.2) 

+36.3 
(24.1/48.8) 

+43.1 
(29.8/56.6) 

+47.8 
(34.4/61.4) 

+29.3 
(17.9/41.7) 

+51.1 
(33.2/69.5) 

+70.2 
(47.4/93.3) 

+83.7 
(58.9/108.8) 

Max cons 
HD (nd) 8.1 7.6 

(+4.4/+12.0) 
+7.3 

(+4.0/+11.7) 
+9.0 

(+5.6/+14.0) 
+8.1 

(+4.8/+12.5) 
+14.7 

(+9.4/+21.7) 
+16.9 

(+11.6/+24.2) 
+22.2 

(+16.4/+30.) 
+25.9 

(+20.4/+34.) 
+12.2 

(+7.0/+18.4) 
+28.2 

(+22.0/+37.) 
+48.4 

(+39.6/+62.) 
+63.7 

(+54.2/+78.) 

Nº event. 
HD (ne) 1.7 

+1.1 
(+0.6/+1.7) 

+1.3 
(+0.8/+1.9) 

+1.2 
(+0.7/+1.8) 

+1.3 
(+0.8/+1.9) 

+1.5 
(+1.0/+2.1) 

+1.9 
(+1.4/+2.5) 

+2.0 
(+1.5/+2.6) 

+2.0 
(+1.5/+2.6) 

+1.7 
(+1.2/+2.3) 

+1.9 
(+1.4/+2.5) 

+2.1 
(+1.6/+2.7) 

+2.0 
(+1.5/+2.6) 

EHD (nd) 0.2 +1.2 
(+0.7/+1.8) 

+1.0 
(+0.5/+1.6) 

+1.4 
(+0.9/+2.0) 

+1.1 
(+0.6/+1.7) 

+2.5 
(+1.9/+3.1) 

+4.0 
(+3.2/+4.8) 

+5.7 
(+4.7/+6.7) 

+7.2 
(+6.2/+8.2) 

+2.1 
(+1.4/+2.8) 

+8.2 
(+6.7/+9.7) 

+20.5 
(+18.0/+23.) 

+31.6 
(+29.1/+34.1) 
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Max cons 
EHD (nd) 0.1 

+0.7 
(+0.2/+1.2) 

+0.6 
(+0.1/+1.1) 

+0.8 
(+0.3/+1.3) 

+0.8 
(+0.3/+1.3) 

+1.3 
(+0.6/+2.0) 

+1.9 
(+0.9/+2.9) 

+2.8 
(+1.3/+4.3) 

+3.4 
(+2.0/+4.8) 

 +1.2 
(+0.5/+1.9) 

+3.6 
(+2.2/+5.0) 

+8.8 
(+4.9/+13.7) 

+13.9 
(+7.4/+20.4) 

Nº event. 
EHD (ne) 

0.0 +0.1 
(+0.0/+0.2) 

+0.1 
(+0.0/+0.2) 

+0.1 
(+0.0/+0.2) 

+0.1 
(+0.0/+0.2) 

0.2 
(+0.2/+0.3) 

+0.4 
(+0.3/+0.5) 

+0.5 
(+0.2/+0.8 

+0.7 
(+0.3/+1.0) 

+0.2 
(+0.1/+0.3) 

+0.8 
(+0.6/+1.0) 

+1.7 
(+1.3/+2.1) 

+2.5 
(+2.1/+3.0) 

TR (nd) 47.6 +27.0 
(15.0/39.0) 

+29.2 
(17.0/41.0) 

+30.6 
(18.0/41.0) 

+30.9 
(18.0/41.5) 

+34.2 
(22.0/46.0) 

+41.5 
(29.0/53.0) 

+49.6 
(37.0/61.0) 

+52.2 
(39.0/64.0

) 

+36.3 
(24.0/48.0) 

+55.7 
(43.0/67.0) 

+74.0 
(57.0/86.0) 

+87.4 
(69.0/100) 

Max cons 
TR (nd) 

28.3 +19.1 
(+8.2/+32.4) 

+22.9 
(+11.4/+37.7) 

+21.3 
(+9.8/+34.4) 

+23.0 
(+11.2/+36.1) 

+31.3 
(+18.4/+46.) 

+38.3 
(+23.4/+54.) 

+43.5 
(+27.4/+60.) 

+49.2 
(+33.2/+66.) 

+33.1 
(+25.1/+43.) 

51.5 
(+33.3/+73.) 

+69.4 
(+48.4/+94.) 

+84.4 
(+63.4/+110.) 

Nº event. 
TR (ne) 2.4 

+0.5 
(0.1/1.0) 

+0.4 
(0.0/0.9) 

+0.5 
(0.1/1.1) 

+0.3 
(0.0/0.8) 

+0.4 
(0.0/0.9) 

+0.5 
(0.1/1.0) 

+0.5 
(0.1/1.1) 

+0.5 
(0.1/1.0) 

+0.5 
(0.1/1.0) 

+0.5 
(0.1/1.0) 

+0.5 
(0.1/1.1) 

+0.3 
(0.0/0.8) 

EQ (nd) 0.7 +4.7 
(+3.6/+5.8) 

+4.8 
(+3.6/+5.8) 

+5.7 
(+3.8/+6.2) 

+5.5 
(+3.8/+6.0) 

+10.1 
(+8.5/+12.0) 

+14.6 
(+12.5/+17.0) 

+20.1 
(+17.9/+23.) 

+23.1 
(+19.9/+26.) 

+9.6 
(+7.4/+12.1) 

+26.1 
(+22.9/+30.) 

+47.2 
(+26.0/+60.) 

61.4 
(+47.2/+75.) 

Max cons 
EQ (nd) 0.5 +2.8 

(+0.6/+5.0) 
+2.4 

+0.4/+4.4) 
+3.6 

(1.6/+5.8) 
+3.1 

(+1.1/+5.3) 
+6.3 

(+3.1/+9.5) 
+8.2 

(+4.8/+11.6) 
+12.0 

(+7.5/ +16.4) 
+14.7 

(+9.3/+18.1) 
+5.6 

(+2.4/+8.8) 
+16.2 

(+11.8/+20.6) 
+32.7 

(+26.3/+39.) 
+45.7 

(+39.3/+52.) 

Nº event. 
EQ (ne) 

0.0 +0.5 
(+0.1/+0.9) 

+0.5 
(+0.1/+0.9) 

+0.5 
(+0.1/+0.9) 

+0.5 
(+0.1/+0.9) 

+0.8 
(+0.6/+1.2) 

+1.0 
(+0.5/+1.5) 

+1.2 
(+0.7/+1.7) 

+1.4 
(+1.1/+1.8) 

+0.8 
(+0.3/+1.1) 

+1.5 
(+1.1/+1.9) 

+2.0 
(+1.5/+2.5) 

+2.3 
(+1.8/+2.8) 

IN (nd) 0.0 
0.0 

(0.0/0.0) 
0.0 

(0.0/0.0) 
0.0 

(0.0/0.0) 
0.0 

(0.0/0.0) 
0.0 

(0.0/0.0) 
0.0 

(0.0/0.0) 
0.0 

(0.0/0.0) 
0.0 

(0.0/0.1) 
0.0 

(0.0/0.0) 
0.0 

(0.0/0.0) 
+1.4 

(0.0/+5.0) 
+4.2 

(0.0/+12.0) 

Max cons 
IN (nd) 0.0 

+0.0 
(-0.0/+0.3) 

+0.0 
(0.0/+0.4) 

+0.0 
(+0.0/+0.5

) 

+0.0 
(+0.0/+0.6

) 

+0.0 
(0.0/+0.4) 

+0.0 
(+0.0/+0.6

) 

+0.0 
(+0.0/+0.1) 

+0.0 
(+0.0/+1.0) 

+0.0 
(+0.0/+0.4) 

+0.0 
(+0.0/+1.2) 

+0.9 
(+0.0/+2.2) 

+2.6 
(+0.5/+7.2) 

Nº event. 
IN (ne) 0.0 

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

0.0 
(0.0/0.0) 

+0.1  
(0.0/0.1) 

+0.4 
(0.0/0.4) 
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FD (nd) 7.2 
-2.6 (-3.3/-

2.0) 
-3.0 (-2.3/-

3.7) 
-2.8 (-3.5/-

2.2) 
-3.7 (-4.4/-

3.1) 
-3.9 (-4.4/-

3.1) 
-4.5 (-5.2/-

3.8) 
-0.05 (-
5.4/-3.8 

-5.4 (-6.2/-
4.8) 

-4.5 (-5.2/-
3.8) 

-5.5 (-6.2/-
4.8)) 

-6.6 (-7.2/-
5.9) 

-6.9 (-7.2/-
6.2) 

Max cons 
FD (nd) 

2.9 -1.0 (-2.1/-
0.5) 

-1.1 (-2.2/-
0.1) 

-1.1 
(-2.4/-0.2) 

-1.3 (-2.3/-
0.9) 

-1.6 (-2.7-
0.6) 

-1.6 (-3.1/-
0.9) 

-1.7 (-3.8/-
1.6) 

-2.0 
(-3.2/-1.8) 

-1.6 (-2.5/-
1.3) 

-2.0 (-2.8/-
1.6) 

-2.5 (-2.9/-
2.0) 

-2.7 (-2.9/-
2.4) 

Nº event. 
FD (nd) 0.6 

-0.2 (0.0/-
0.1) 

-0.2 (0.0/-
0.1) 

-0.2 (0.0/-
0.1) 

-0.2 (0.0/-
0.1) 

-0.3 (-0.5/-
0.1) 

-0.4 (-0.5/-
0.2) 

-0.4 (-0.5/-
0.2) 

-0.5 (-0.5/-
0.3) 

-0.4 (-0.6/-
0.2) 

-0.5 (-0.6/-
0.3) 

-0.6 (-0.6/-
0.4) 

-0.6 (-0.6/-
0.5) 
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Table 12-2. Summary table for expected changes in future thermal climate variables and extreme indicators from FICLIMA statistical downscaling in AMB. 
Changes are expressed as the difference in “median(percentile 10/percentile 90)” of future expected values for each SSP and time period with respect to the 

historical median reference value for the period 1981-2010. Units are expressed in the INDEX column (nd = number of days, ne = number of events). 
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INDEX 

81-10 2021-2050 2041-2070 2071-2100 

HIST. 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

Thermal indicators 

TXm 
(ºC) 

20.2 
+1.2 

(+0.4/+1.6) 
+1.3 

(+0.5/+1.9) 
+1.4 

(+0.5/+1.9) 
+1.4 

(+0.5/+1.9) 
+1.6 

(+0.9/+2.2) 
+1.9 

(+1.2/+2.7) 
+2.2 

(+1.5/+3.0) 
+2.5 

(+1.8/+3.2) 
+1.7 

(+1.0/+2.6) 
+2.6 

(+1.9/+3.7) 
+3.7 

(+2.9/+4.5) 
+4.5 

(+3.7/+5.3) 

TNm 
(ºC) 16.2 

+1.0 
(+0.4/+1.6) 

+1.1 
(+0.5/+1.9) 

+1.1 
(+0.5/+1.9) 

+1.1 
(+0.5/+1.9) 

+1.6 
(+0.9/+2.2) 

+1.9 
(+1.2/+2.7) 

+2.2 
(+1.5/+3.0) 

+2.5 
(+1.8/+3.2) 

+1.7 
(+1.0/+2.6) 

+2.6 
(+1.9/+3.7) 

+3.7 
(+2.9/+4.5) 

+4.5 
(+3.7/+5.3) 

TM 
(ºC) 

12.2 
+1.0 

(+0.4/+1.6) 
+1.1 

(+0.5/+1.9) 
+1.1 

(+0.5/+1.9) 
+1.1 

(+0.5/+1.9) 
+1.6 

(+0.9/+2.2) 
+1.9 

(+1.2/+2.7) 
+2.2 

(+1.5/+3.0) 
+2.5 

(+1.8/+3.2) 
+1.7 

(+1.0/+2.6) 
+2.6 

(+1.9/+3.7) 
+3.7 

(+2.9/+4.5) 
+4.5 

(+3.7/+5.3) 

HWle 
(nd) 4.0 

+2.0 (+0.8/ 
+3.5) 

+2.1 (+0.9 / 
+3.2) 

+2.7 (+1.8 / 
+3.5) 

+2.5 (+1.5 / 
+4.0) 

+2.9 (+1.9 / 
+3.6) 

+3.6 (+2.5 / 
+4.5) 

+4.5 (+3.3 / 
+5.4) 

+6.4 (+5.0 / 
+7.8) 

+2.6 (+1.6 / 
+3.3) 

+6.3 (+4.8 / 
+7.7) 

+10.4 (+8.8 / 
+12.0) 

+14.9 (+13.2 
/ +16.6) 

HWix 
(ºC) 

33.4 
+0.3 (+0.0/-

0.6) 
+0.2 (+0.0/-

0.4) 
+0.4 (+0.2/-

0.7) 
+0.4 (+0.2/-

0.7) 
+0.6 (+0.3/-

1.0) 
+0.8 (+0.4/-

1.2) 
+0.9 (+0.5/-

1.4) 
+1.1 (+0.6/-

1.7) 
+0.5 (+0.2/-

0.9) 
+1.2 (+0.7/-

1.8) 
+1.9 (+1.2/-

2.6) 
+2.4 (+1.5/-

3.3) 

HWf 
(ne) 

0.4 
+1.5 

 (1.0/2.1) 
+2.3  

(1.7/3.0) 
+2.3  

(1.7/3.6) 
+2.3  

(1.7/3.6) 
+3.0 

(2.4/3.8) 
+3.6 

(3.0/4.4) 
+3.3 

(2.4/4.4) 
+3.3 

 (2.6/4.5) 
+3.3 

 (2.7/4.1) 
+3.3  

(2.7/4.1) 
+4.2  

(3.1/5.1) 
+4.2 

(3.6/5.0) 

HWd 
(nd) 

3.6 
10.4 

(+8.3/+13.0) 
+11.3 

(+9.2/+14.1) 
+13.0 

(+10.9/+15.9) 
+11.8 

(+9.7/+14.6) 
+21.3 

(+12.2/+25.9
) 

+26.5 
(+17.4/+35.3

) 

+33.8 
(+24.7/+47.6

) 

+38.4 
(+25.3/+52.2

) 

+18.3 
(+16.2/+28.9

) 

+42.3 
(+29.2/+54.1

) 

+63.3 
(+51.2/+79.1) 

+79.0 
(+62.2/+96.1

) 

HI-P90 
(ºC) 

31.8 +1.9 
(+0.5/+3.5) 

+1.9 
 +0.5/+2.9) 

+2.4  
(+0.8/+4.3) 

+2.3  
(+0.8/+4.0) 

+2.5  
(+1.0/+4.3) 

+3.3 
 (+1.8/+5.1) 

+4.1  
(+2.6/+6.0) 

+4.5 
(+3.0/+6.4) 

+2.4  
(+0.9/+4.2) 

+5.3  
(+3.7/+7.2) 

+7.4 
(+5.8/+9.2) 

+9.2  
(+7.6/+11.0) 

UTCI 13.1 +1.6 +1.7 +1.8 +1.8 +2.2 +2.6 +2.9 +3.2 +2.2 +3.4 +4.8 +5.9 
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(ºC) (+1.1/+1.8) (+1.1/+2.1) (+1.1/+2.1) (+0.9/+2.2) (+1.6/+2.8) (+2.0/+3.0) (+2.3/+3.2) (+2.4/+4.0) (+1.4/+3.0) (+2.8/+4.8) (+3.8/+5.9) (+4.8/+7.4) 

UHI 
(ºC) 

2.2 
-0.2 (-0.3 / -

0.1) 
-0.3 (-0.4 / -

0.2) 
-0.4 (-0.5 / -

0.3) 
-0.5 (-0.6 / -

0.4) 
-0.5 (-0.7 / -

0.3) 
-0.7 (-0.9 / -

0.5) 
-0.9 (-1.1 / -

0.7) 
-1.1 (-1.3 / -

0.9) 
-0.8 (-1.0 / -

0.6) 
-1.0 (-1.2 / -

0.8) 
-1.2 (-1.4 / -

1.0) 
-1.4 (-1.6 / -

1.2) 
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Table 13. Summary table for expected changes in future precipitation climate variables and extreme indicators from FICLIMA statistical downscaling in AMB. 
Changes are expressed as the difference in “median(percentile 10/percentile 90)” of future expected values for each SSP and time period with respect to the 

historical median reference value for the period 1981-2010. Units are expressed in the INDEX column (nd = number of days, ne = number of events). 

INDEX 

81-10 2021-2050 2041-2070 2071-2100 

HIST. 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

Precipitation indicators 

R20 
(nd) 6.0 

+0.2 
(0/-0.1) 

+0.1 
(0/-0.1) 

-0.2 
(0/-0.4) 

+0.1 
(0/-0.1) 

+0.1 
(0/-0.1) 

+0.2 
(0/-0.1) 

-0.2 
(0/-0.4) 

+0.1 
(0/-0.1) 

+0.2 
(0/-0.1) 

+0.1 
(0/-0.1) 

-0.2 
(0/-0.4) 

-0.4 
(0/-0.1) 

R50 
(nd) 

1.1 +0.2 (-
0.1/+0.3) 

+0.1 (-
0.1/+0.3) 

+0.0 (-
0.2/+0.3) 

+0.1 (-
0.1/+0.3) 

+0.2 (-
0.1/+0.3) 

+0.2 (-
0.1/+0.3) 

+0.2 (-
0.2/+0.3) 

+0.2 (-
0.1/+0.3) 

+0.1 (-
0.1/+0.3) 

+0.2 (-
0.2/+0.3) 

+0.3 
(-0.1/+0.3) 

+0.2 (-
0.2/+0.3) 

R100 
(nd) 0.1 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.3) 

+0.1 
(0.0/+0.3) 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.3) 

+0.1 
(0.0/+0.2) 

Ra 
(mm,%) 

524 
+2% 

(0%/3%) 
+1% (-

1%/2%) 
-2% 

(0%/1%) 
+1% 

(0%/3%) 
+0% 

(0%/3%) 
+1% 

(0%/2%) 
+0% (-

1%/2%) 
+0% 

(0%/3%) 
+1% 

(0%/2%) 
     -2% 
(-2%/3%) 

-2% (-
2%/3%) 

-7% (-
9%/1%) 

IDF - CCF 
100y 

(mm/h, %) 
208 

-4% (-
24%/10%

) 

+3.5% (-
13%/13%) 

-14.5% (-
23%/22%

) 

-4.2% (-
19%/20%

) 

+8% (-
25%/21%

) 

-0% (-
23%/25

%) 

+6.5% (-
17%/26%

) 

+6.5% (-
13%/32%

) 

+4% (-
28%/17%

) 

+3% 
(-

12%/33%
) 

10% (-
5%/63%) 

17% (-
6%/51%) 
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Forest fire indicators 

Mean FWI 15.8 +0.8 (-
1.2/+2.5) 

+0.9 (-
1.2/+2.6) 

+1.3 (-
0.9/+3.2) 

+0.8 (-
1.1/+2.3) 

+1.5 (-
1.0/+3.4) 

+1.7 (-
0.9/+4.5) 

+2.1 (-
0.9/+4.0) 

+2.2 (-
1.0/+4.1) 

+1.0 (-
1.2/+2.6) 

+2.2 
(+0.4/+4.5) 

+3.5 
(+0.8/+5.0) 

+4.2 
(+1.0/+6.4) 

FWI>38 
(nd) 7.5 +1.5 (-

0.3/+2.5) 
+1.0 (-

0.3/+4.2) 
+2.2 (-

0.4/+4.8) 
+1.2 (-

0.4/+3.0) 
+1.8 (-

0.2/+3.3) 
+3.0 (-

0.1/+5.5) 
+2.5 (-

0.1/+5.2) 
+3.0 (-

0.2/+6.5) 
+1.8 (-

0.2/+3.3) 
+3.2 (-

0.1/+7.0) 
+4.0 (-

0.0/+12) 
+6.0 

(+0.5/+19) 

 
 

Table 14. Summary table for expected changes in future wind climate variables and drought indicators from FICLIMA statistical downscaling in AMB. Changes 
are expressed as the difference in “median(percentile 10/percentile 90)” of future expected values for each SSP and time period considered with respect to 

the historical median reference value for the period 1981-2010. Units are expressed in the INDEX column (nd = number of days, ne = number of events). 

INDEX 

81-10 2021-2050 2041-2070 2071-2100 

HIST. 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

Drought indicators 

CDDx 
(nd) 38.1 

+0.4 
 (+0.1/+0.7) 

+0.0  
(+0.0/+0.0) 

+0.7 
 (+0.4/+1.0) 

+0.5  
(+0.2/+0.8) 

+1.2 
 (+0.6/+1.8) 

+1.8 
(+1.0/+2.6) 

+1.9 
 (+1.1/+2.7) 

+2.9 
 (+1.9/+3.9) 

+0.5  
(+0.2/+0.8) 

+2.5  
(+1.2/+3.8) 

+3.3 
(+2.0/+4.6) 

+4.7 
(+3.4/+6.0) 

CDDm 
(nd) 10.2 

+0.1 
(+0.0/+0.2) 

+0.2 
(+0.1/+0.3) 

+0.4 
(+0.2/+0.6) 

+0.2 
(+0.0/+0.4

) 

+0.2 
(+0.0/+0.4

) 

+0.5 
(+0.2/+0.7) 

+0.7 
(+0.4/+1.0) 

+0.7 
(+0.4/+1.0) 

+0.3 
(+0.0/+0.6

) 

+0.8 
(+0.4/+1.2) 

+1.2 
(+0.8/+1.8) 

+1.8 
(+1.2/+2.4) 

SPI-36 0.0 
+0.3 

(+0.1/+0.5) 
+0.2 

(+0.0/+0.4
) 

+0.1 (-
0.1/+0.3) 

+0.4 
(+0.2/+0.6) 

+0.1 
(+0.1/+0.5) 

+0.2 
(+0.0/+0.4

) 

+0.1 (-
0.1/+0.3) 

+0.2 
(+0.2/+0.6) 

+0.3 
(+0.1/+0.5) 

+0.2 
(+0.0/+0.4

) 

+0.1 (-
0.1/+0.6) 

+0.4 
(+0.2/+0.5) 
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SPEI-36 0.0 
-0.8 (-1.6/-

0.0) 
-1.0 (-1.8/-

0.2) 
-1.0 (-1.8/-

0.2) 
-0.9 (-1.7/-

0.1) 
-1.6 (-2.8/-

0.4) 
-1.6 (-2.4/-

0.8) 
-2.0 (-2.9/-

1.1) 
-2.2 (-3.3/-

1.3) 
-1.4 (-2.2/-

0.6) 
-2.4 (-3.2/-

1.6) 
-3.1 (-4.0/-

2.2) 
-3.8 (-4.7/-

2.9) 

Oceanic indicators 

SS-25y 
(cm, %) 

79 -7%  
(-27/13) 

-5% (-
22/27) 

-12% (-
23/12) 

-5%  
(-21/8) 

-4%  
(-18/22) 

-4%  
(-12/2) 

0%  
(-33/11) 

-3%  
(-17/23) 

-6% 
(-17/9) 

-12%  
(-21/-1) 

-11%  
(-20/5) 

-14% (-
34/-7) 

OW-MWH 
-25y (m, 

%) 
8.77 

-2%  
(-16/+18) 

+4%  
(-9/+13) 

-6%  
(-18/+8) 

-4%  
(-12/+1) 

+1%  
(-14/+25) 

0% 
(-10/+17) 

-8% (-16/-
12) 

-5%  
(-13/+5) 

-4%  
(-15/+16) 

-5%  
(-13/+2) 

+2%  
(-18/+11) 

–8% 
(-25/+7) 

OW-SWH 
-25y (m, 

%) 
5.41 

-2%  
(-20/+16) 

+3%  
(-10/+14) 

-7%  
(-18/+7) 

-3%  
(-16/+9) 

+3%  
(-14/+25) 

+5%  
(-14/+14) 

-6%  
(-14/+14) 

-2% 
(-20/+9) 

+5% 
(-19/+16) 

-4%  
(-10/+2) 

5%  
(-16/+13) 

-5%  
(-24/+6) 

Wind indicators 

EWG 
(km/h,%) 

65 -2%  
(-14/+6) 

-2%  
(-13/+5) 

-5%  
(-14/-3) 

-3%  
(-10/+8) 

+2%  
(-14/+8) 

-1%  
(-8/+6) 

+1%  
(-11/+9) 

-8%  
(-12/-7) 

-1%  
(-11/+10) 

-2%  
(-8/+8) 

-1%  
(-9/+6) 

-9%  
(-15/-2) 
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5.1.3. Discussion for the South Aegean Region - SAR 

 

IMPORTANT: In this section, it is discussed the results for the SAR area, considering all the stations 
(HNMS-NOAA and NOA-MeteoGR) falling within the administrative region covering the four islands of 
interest. Changes will be mainly discussed in what refers to changes in median values; due to the 
geographical heterogeneity (shore and inland, coast and mountain) of stations, some indicators might be 
registered or expected in the future in some points, but might not be explicitly mentioned. A more detailed 
summary with uncertainty thresholds is done in the next 5.1.4 section. All summary figures will be shared 
and available to partners for detailed consultation, and the posterior spatial treatment (TIF) of results 
might help in identifying in ICARIA’s DSS, once made available, the particularities of results in the 
geographical extension of the CS. 

— 

In accordance with the climate change scenarios tailored for this specific case study, and aligning with 
projected trends in the current warming scenario, temperature increases are anticipated across all 
scenarios, timeframes, and seasons. However, due to the complex relationship between precipitation 
patterns and warming scenarios, significant alterations in rainfall are not expected across any scenario. In 
summary, an escalation in aridity is highly likely to accompany rising temperatures, especially during the 
summer season. 

 

Thermal indicators 
In relation to the cluster of variables and indicators associated with temperature, as delineated in the 
preceding section 4.2, the findings distinctly indicate a consistent trajectory towards elevated 
temperatures in the future, with more adverse scenarios corresponding to higher Shared Socioeconomic 
Pathways (SSPs).  

Concerning the temperature variable specifically, projections indicate that maximum temperatures are 
poised to increase by approximately 1.5 to 2.5 degrees Celsius by mid-century, based on median values 
outlined in future scenarios. By the end of the century, under SSP2-4.5 and SSP5-8.5 scenarios, these 
increases could range from 2.5 up to 4.3 degrees Celsius, as illustrated in Figure 37. Similar increments are 
anticipated for mean and minimum annual temperatures relative to maximum temperatures. Substantial 
and noteworthy elevations are anticipated across all scenarios, seasonal periods, and timeframes. 
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Figure 37. Expected evolution of mean maximum temperature for SAR stations. 

 

Considering percentiles, there is an anticipated notable decrease/increase in Cold/Warm days (P10/P90 
of maximum temperature, respectively) in the future. This is because using a percentile indicator based on 
historical data as a reference point in a warming climate leads to an increase in the number of days 
exceeding P90 and a decrease in those falling below P10. Projections indicate that Cold days, which 
currently stand at approximately ~34 days/year, are expected to decrease by 50-60% by mid-century 
and by about 75-90% by 2100. Conversely, Warm days are projected to double (+100% or +35 days) by 
mid-century and increase by about 150-200% (50-83 days) by 2100.  

The changes in maximum temperature will consequently impact the indicators derived from it. Specifically, 
Heat Days (Tx > 30ºC) and Extreme Heat Days (Tx > 35ºC) are expected to see significant increases. Heat 
days, based on projections, are forecasted to increase from the historical average of 33 days to a range 
of 60 to 80 days per year by 2050 in the AMB region and to exceed 70-100 days annually in worst-case 
scenarios by 2100 (refer to Figure 37). Extreme Heat days would follow a similar trend. Although currently 
less common in the SAR region, with just 2.9 days per year, changes in sea surface temperatures and air 
patterns could result in a notable average increase of +7 days by mid-century and a further increase to 10 
up to 32 days by the late-century in worst-case scenarios. 

The rise in minimum temperatures is expected to result in the near disappearance of frost days during 
winter. Frost days, which are currently extremely rare in the Aegean region, with a median of just 0.4 days 
(inland high stations record around 3-4 days), are projected to dwindle to zero in most stations by 2050, 
with practically no frost days anticipated across all stations by 2100. This warming trend in minimum 
temperatures extends to the summer season as well, leading to significant increases in the occurrence of 
tropical nights (Tmin > 20ºC) across all scenarios and time horizons, particularly towards the end of the 
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century. The SAR area already experiences a high number of tropical nights due to warm sea surface 
temperatures year-round and its small island geography, with historic values averaging around 110 nights. 
Substantial increases are anticipated even in the earliest time periods (approximately +17 nights on 
average), with projections indicating a steep rise to between +26 and up to +64 nights in the worst-case 
scenarios, potentially resulting in a third or more of nights (up to 165) per year exceeding 20ºC by 2100 
(refer to Figure 39). This trend extends to equatorial nights (Tmin > 25ºC) and infernal nights (Tmin > 30ºC) 
as well. Equatorial nights, already present in the SAR region at approximately 14 days annually, are 
expected to follow the trend of tropical nights, with increases ranging from +14 nights before 2050 to 
between +27 and up to +82 nights by 2100 across different scenarios. Infernal nights, which have been 
almost non-existent thus far (averaging 0.4 nights per year), are projected to become more common from 
mid-century onwards, with a median expectation of 4 infernal nights annually by the end of the century, 
potentially reaching up to +15 nights in certain areas. 

 

In addition to the preceding discussion, and to gain deeper insights into the potential impacts of the 
aforementioned indicators, two derived metrics were employed: the calculation of the maximum number 
of consecutive days for each indicator, and the frequency of events (defined as periods lasting ≥3 
consecutive days) expected throughout the year. In terms of maximum consecutive days, Heat Days may 
extend from the typical 12-day streak observed historically to around 20 days by 2050, or even surpass 
40 days by 2100. Extreme Heat Days could occur consecutively for 5 to over 10 days by the end of the 
century. Frost days are predicted to virtually disappear, while Tropical Nights could increase from the 
current streak of 83 days to an average of 120 to 150 consecutive nights in the worst-case scenario. 
Equatorial nights, which have previously lasted for 7 consecutive days, could extend to approximately 25 
consecutive nights by mid-century, or even from 37 to 70 nights by the end of the century. Infernal nights, 
however, are not anticipated to occur consecutively until the late 21st century, with durations ranging from 
4 to 7 days.  

 

Regarding the number of events, Heat Days are projected to increase from approximately 3 events per 
year to 4.5 events over the course of the century, primarily driven by the rise in consecutive days. Extreme 
Heat Days, which were previously absent, may occur almost once or twice a year by 2100. Frost days, 
which had no occurrences in the past, are not expected to occur in the future either. The frequency of 
Tropical Nights events, averaging around 3 per year historically, is anticipated to remain stable, although 
their duration may increase. Equatorial night events, with one event recorded on average, could 
potentially increase to 1.5-2 events by mid-century. Meanwhile, only around 1 event of infernal nights may 
occur by the end of the century. 
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Figure 38. Expected evolution of annual heat days for SAR stations. 

 

 

Figure 39. Expected evolution of tropical nights for SAR stations. 
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Moreover, in addition to the aforementioned points, rising temperatures will impact the occurrence of 
extreme weather phenomena, notably heat waves, which have substantial implications for human health, 
infrastructure, and the environment. Therefore, it is imperative to analyze the duration, intensity, and 
frequency of heat waves to characterize these extreme events. The definition of a heat wave was 
established within the framework of ICARIA, considering various climate and scientific criteria. a 
temperature-related episode of at least three consecutive days where the weather observations 
considered register maximum temperatures above the 95% percentile of their daily maximum temperature 
records for the months of June to September of the 1981-2010 period.  

Projections suggest a significant increase in the intensity, duration, and frequency of heat waves across 
most scenarios by mid-century and beyond. Historically, the average number of heat wave events was 
approximately 0.6. By mid-century, this figure is expected to rise by 3 to 4 events on average annually, 
and up to 5 events in the median by the end of the century, under scenarios ranging from SSP2-4.5 to 
SSP5-8.5 (see Figure 40). 

 

Figure 40. Expected evolution of tropical nights for SAR stations. 

The average heat wave length is anticipated to increase from 3.8 days historically to 5.5-6 days by mid-
century. By late-century, under the most pessimistic scenarios, a significant rise is projected, with 
durations averaging 7-9 days in moderate scenarios and up to 11 days per event in the SSP5-8.5 (refer to 
Figure 41). Moreover, the maximum heat wave intensity is expected to increase, with median values 
reaching 35.2ºC for the AMB. While no significant change is anticipated by early-century, projections 
indicate an increase of around +1ºC to +2.4ºC by mid-century and late-century, particularly in the most 
pessimistic scenarios. Additionally, the annual count of  heat wave days—defined as days exceeding the 
95th percentile of maximum temperatures but excluding consecutive 3-day events—is poised to rise 
significantly. Historic figures of 4.9 days are expected to surge to over 23 (up to 32) by 2050 and 
potentially reach 35 to 70 by 2100. 
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Figure 41. Expected evolution of tropical nights for SAR stations. 

 

 

Customized variables have been computed for SAR, some concerning thermal comfort. Among them is the 
widely-used Heat Index (HI), derived from a blend of temperature and relative humidity (RH) across 
specific thresholds, reflecting the body's thermal perception at a given moment. The Heat Index elucidates 
that under certain T/RH conditions, the heat stress experienced by the body, potentially perilous, diverges 
from the actual recorded temperature. 

 

For SAR, the reference HI typically hovers around a notable 36.9ºC and is anticipated to undergo 
substantial and significant escalation in the future. This projection stems from a discernible and robust 
trend of escalating temperatures, coupled with the continuous infusion of humidity from an increasingly 
warmer Aegean Sea. Consequently, increases ranging from +4-6ºC are projected by mid-century. Further 
elevations of +5 up to an extraordinary +12ºC (potentially yielding a median HI of 48ºC) in worst-case 
scenarios are plausible by late-century (see Figure 42 for additional insight). 
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Figure 42. Expected evolution of the percentile 90 of Heat Index for SAR stations. 

 

Precipitation indicators 

Concerning precipitation indicators, a variety of metrics have been derived to suit the requirements of the 
SAR CS. Some were tailored to gauge shifts in annual precipitation, while others targeted extreme rainfall 
occurrences. Overall, no substantial alterations are anticipated in annual precipitation or in days exceeding 
specific extreme thresholds. 

In greater detail, analyses of annual precipitation metrics, encompassing yearly cumulative and seasonal 
cumulative precipitation, reveal no notable shifts in the foreseeable future, as depicted in Figure 43. 
Although reductions are projected across various scenarios (up to -12% by 2100), the associated 
uncertainties preclude considering these changes as significant. 

Regarding extreme rainfall events, indicators tracking days surpassing thresholds of 20, 50, and 100mm 
were examined. In all cases, the anticipated changes compared to historical observations (6.8, 1.5, and 0.3 
days, respectively) are practically negligible and fail to reach significance. 
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Figure 43. Expected evolution of annual cumulative precipitation for SAR stations. 

 

Drought indicators 
Concerning drought assessment, two categories of indicators were established: those focused on dry 
periods (dry spell duration) and those analyzing anomalies in precipitation/evapotranspiration (SPI & 
SPEI). Dry days were defined as those with recorded precipitation below 1mm, leading to the calculation of 
two indicators: mean length of dry spell and maximum length of dry spell. About the Mean length of dry 
spells, historically, the SAR experienced an average of around 13 dry days per year, with minimal 
anticipated changes in the future except for SSP3-7.0 and SSP5-8.5 scenarios by the century's end, 
showing slight but significant increases of approximately +3 days. Regarding the maximum length of dry 
spells, the historical reference value stands at 116 days, with marginal increases projected in the future, 
except for SSP3-7.0 and SSP5-8.5 by late-century, where a change of approximately +16 days is expected.  

As for the SPI and SPEI indexes, historic values are consistently set to 0 due to their definitions. Expected 
changes vary between the two indices. For SPI-36, no significant alterations are projected by mid or late-
century across scenarios, except for SSP5-8.5 by 2100, indicating a -0.8 change. This is attributed to 
minimal shifts in mean accumulated precipitation. Conversely, for SPEI, which considers temperature 
changes for evapotranspiration estimation, alterations are expected. With rising temperatures and 
stagnant or declining rainfall patterns, significant decreases in SPEI values are forecasted for all 
timeframes and scenarios, particularly towards the century's end. Projections indicate reductions ranging 
from -2 to -3.4 in SPEI-12 and from -3 to nearly -4.6 for SSP5-8.5 in SPEI-36 (refer to Figure 44). Similar 
declines are anticipated in other monthly-aggregated SPEI indices (1,3,6,24). 
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Figure 44. Expected evolution of 36-month length SPEI Thornthwaite for SAR stations. 

 

Forest fire indicator 
For the case of the hazards concerning forest fires, the FWI was used as an indicator to evaluate the 
likelihood of extreme forest fires developing when started. This index merges different conditions of 
humidity, temperature and wind to assess the evolution of fires. In this regard, projections show that the 
mean FWI between June and September (risk season) for the SAR is about 21.5 in historic period, and all 
scenarios agree in future significant increments in this value, of around +3-6 depending on the scenario, 
larger with worse SSPs and the further we go through the century (Figure 45). For the extremest situations, 
the number of days with FWI>38 (Very High risk) is set at 18 in the past, and will increase around +5-7 
days by 2050 up to a significant +7-11 for worst case scenarios by 2100. 
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Figure 45. Expected evolution of mean FWI between June and September for SAR stations. 

 

Wind indicator 
Wind is one of the most difficult meteorological variables to be studied when dealing with future climate 
change variations.  Due to its own nature, a result of multiple factors such as orography, local thermal 
variations, pressure gradients, or other weather phenomena, the future study of wind is not as 
straightforward as temperature could be, and future changes in pressure centres and other atmospheric 
patterns that determine wind’s strength and direction is still today prone to high uncertainties. Besides, 
the remarkable lack of wind observations or their poor quality with respect to those from temperature or 
precipitation also hinders the procedures in statistical downscaling. It is good advice to take into account 
the aforementioned difficulty of working with the wind when interpreting the next results. 

 

In this sense, wind gusts have been modelled for the future since it is a variable that poses higher risks 
and interest for ICARIA, and is included in other multiple indicators. The future evolution is studied for 
percentiles since it doesn’t respond to a normal distribution and mean values are meaningless. For the 
SAR, Percentile 99, as well as other percentiles (P80, P90 or P100) don't seem to show any change in its 
expected behaviour in the future. 

 

There are few variations in terms of maximum wind gusts (Figure 46). In general, all models and scenarios 
contemplate slight decreases for the Aegean Sea, but this does not include the possibility of an increase 
in severe phenomena such as medicanes or severe storms, which the current climate models do not yet 
model correctly. 
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Figure 46. Results for wind gust projections for Return Period of 20 years and for SAR stations. 
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5.1.4. Summary of results for the South Aegean Region - SAR 

Table 15-1. Summary table for expected changes in future thermal climate variables and extreme indicators from FICLIMA statistical downscaling in SAR. 
Changes are expressed as the difference in “median(percentile 10/percentile 90)” of future expected values for each SSP and time period with respect to the 

historical median reference value for the period 1981-2010. Units are expressed in the INDEX column (nd = number of days, ne = number of events). 

INDEX 

81-10 2021-2050 2041-2070 2071-2100 

HIST. 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

Thermal indicators 

TX90 
 (nd) 35.9 

+18.1 
(+10.2/+28.

4) 

+19.4 
(+11.3/+30.

7) 

+18.6 
(+10.7/+29.

0) 

+22.7 
(+14.8/+33.

0) 

+32.1 
(+24.2/+42.

4) 

+33.7 
(+25.8/+44

.0) 

+32.4 
(+24.5/+42

.7) 

+50.5 
(+42.6/+61.

8) 

+43.8 
(+35.9/+54

.1) 

+52.4 
(+44.5/+63

.7) 

+71.9 
(+64.0/+83

.2) 

+83.0 
(+75.1/+94.

3) 

TX10 
 (nd) 33.0 -10.3 (-

13.9/-6.7) 
-10.4 (-

12.2/-8.6) 
-8.6 (-

10.4/-6.8) 
-10.5 (-

13.7/-7.3) 
-13.5 (-

15.3/-11.7) 
-16.4 (-18.2/-

14.6) 
-18.4 (-

20.2/-16.6) 
-19.7 (-21.5/-

17.9) 
-15.7 (-17.5/-

13.9) 
-20.4 (-

22.2/-18.6) 
-24.7 (-

26.5/-22.9) 
-26.9 (-

28.7/-25.1) 

HD 
(nd) 33.3 +18.6 

(+12.5/+22) 
+21.2 

(+13.5/+25.1) 
+22.8 

(+14.6/+25.1) 
+24.9 

(+17.0/+30) 
+27.0 

(+17.5/+42.3) 
+32.3(+22.8/

+47) 
+39.0 

(+29.5/+54) 
+45.61 

(+35.1/+61.1) 
+28.6 

(+18.1/+43.6) 
+46.7 

(+36.2/+57) 
+65.8 

(+55.3/+76) 
+78.2 

(+68.7/+88) 

Max cons 
HD (nd) 

11.9 +7.0 
(+4.6/+14.2) 

+7.6 
(+5.2/+15.0) 

+7.7 
(+5.3/+15.1) 

+8.5 
(+5.3/+16.1) 

+13.2 
(+8.8/+22.4) 

+17.2 
(+12.8/+26) 

+20.7 
(+16.3/+30) 

+25.6 
(+21.2/+35) 

+14.8 
(+10.4/+24) 

+28.3 
(+22.9/+40) 

+43.4 
(+37.9/+56) 

+57.6 
(+52.2/+70) 

Nº event. 
HD (ne) 2.8 

+0.8 
(+0.2/+1.6) 

+0.8 
(+0.3/+1.8) 

+0.9 
(+0.4/+1.8) 

+1.0 
(+0.5/+1.8) 

+1.4 
(+0.7/+2.2 

+1.6 
(+1.0/+2.4 

+1.8 
(+1.2/+2.8) 

+1.8 
(+1.2/+2.8) 

+1.4 
(+0.7/+2.2) 

+1.7 
(+0.9/+2.5) 

+1.8 
(+1.1/+2.6) 

+1.6 
(+1.0/+2.4) 

EHD (nd) 2.9 +2.4 
(+0.9/+4.9) 

+2.1 
(+0.8/+4.7) 

+2.7 
(+0.9/+5.0) 

+2.8 
(+0.9/+4.9) 

+4.9 
(+2.6/+6.3) 

+6.3 
(+3.8/+8.4) 

+9.0 
(+5.0/+11.8) 

+10.3 
(+6.4/+13.5) 

+4.9 
(+2.6/+6.3) 

+11.8 
(+6.7/+14.5) 

+22.2 
(+12.5/+31.9) 

+31.9 
(+20.2/+42) 
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Max cons 
EHD (nd) 1.2 

+1.1 
(+0.3/+2.2) 

+0.9 
(+0.1/+2.0) 

+1.3 
(+0.5/+2.5) 

+1.3 
(+0.5/+2.5) 

+2.2 
(+1.2/+3.3) 

+3.0 
(+2.0/+4.1) 

+3.9 
(+2.9/+5.0) 

+4.6 
(+3.6/+5.7) 

+2.1 
(+1.1/+3.2) 

+5.1 
(+4.1/+6.2) 

+9.3 
(+8.3/+10.4) 

+12.5 
(+11.5/+13.6) 

Nº event. 
EHD (ne) 

0.2 +0.2 
(+0.0/+0.4) 

+0.1 (-
0.1/+0.3) 

+0.2 
(+0.0/+0.4) 

+0.2 
(+0.0/+0.4) 

+0.4 
(+0.1/+0.7) 

+0.5 
(+0.2/+0.8) 

+0.6 
(+0.3/+0.9) 

+0.8 
(+0.4/+1.2) 

+0.4 
(+0.1/+0.8) 

+1.0 
(+0.5/+1.8) 

+1.8 
(+0.8/+2.5) 

+2.5 
(+1.1/+3.2) 

TR (nd) 110.6 +20.5 
(+12.1/+29.9) 

+21.4 
(+13.1/+29.6) 

+22.3 
(+14.5/+31.3) 

+23.4 
(+15.1/+33.9) 

+24.3 
(+16.3/+33.1) 

+29.3 
(+21.3/+38.1) 

+33.8 
(+25.8/+43) 

+404. 
(+33.5/+50) 

+26.2 
(+18.2/+35.) 

+39.9 
(+27.9/+52.) 

+56.0 
(+44.0/+68) 

+64.7 
(+52.7/+77.5

) 

Max cons 
TR (nd) 83.0 +20.8 

(+14.2/+30.1) 
+22.0 

(+15.4/+31.3) 
+22.0 

(+15.4/+31.3) 
+24.6 

(+17.0/+33) 
+32.0 

(+24.4/+42) 
+36.2 

(+28.6/+46) 
+42.1 

(+34.5/+53) 
+47.0 

(+39.4/+57) 
+32.1 

(+22.4/+43) 
+47.2 

(+37.4/+57) 
+61.9 

(+54.3/+72) 
+70.7 

(+63.1/+81.0) 

Nº event. 
TR (ne) 

3.1 -0.2 (-
0.3/+0.1) 

-0.2 (-
0.4/+0.1) 

-0.3 (-
0.5/+0.1) 

-0.3 (-
0.6/+0.2) 

-0.4 (-
0.5/+0.1) 

-0.5 (-
0.8/+0.1) 

-0.4 (-
0.7/+0.1) 

-0.5 (-
0.8/0.0) 

-0.4 (-
0.7/+0.2) 

-0.4 (-
0.6/+0.1) 

-0.4 (-
0.6/0.0) 

-0.3 (-
0.6/+0.2) 

EQ (nd) 14.5 
+14.3 

(+11.9/+17.1) 
+13.9 

(+11.4/+16.7) 
+15.9 

(+13.4/+19.1) 
+17.5 

(+15.0/+20. 
+27.1 

(+23.6/+31.1) 
+33.2 

(+29.7/+37) 
+39.6 

(+35.9/+44) 
+45.9 

(+42.2/+50) 
+27.8 

(+24.2/+31.7) 
+49.2 

(+45.6/+53) 
+69.3 

(+65.7/+73) 
+82.6 

(+79.0/+86) 

Max cons 
EQ (nd) 

6.8 +7.5 
(+6.0/+9.0) 

+7.6(+6.0/
+9.1) 

+8.4 
(+6.4/+9.6) 

+8.8 
(+6.9/+9.9) 

+13.1 
(+10.0/+18.) 

+18.8 
(+12.0/+25.) 

+22.7 
(+15.0/+32) 

+28.1 
(+20.0/+45) 

+15.6 
(+12.0/+19.0) 

+30.5 
(+20.0/+43) 

+49.9 
(+40.0/+56) 

+64.1 
(+50.0/+80) 

Nº event. 
EQ (ne) 1.2 +0.9 

(+0.2/+1.6) 
+0.9 

(+0.2/+1.7) 
+1.0 

(+0.3/+1.9) 
+1.1 

(+0.4/+2.0) 
+1.5 

(+0.5/+2.3) 
+1.7 

(+0.6/+2.5) 
+1.9 

(+0.7/+2.7) 
+2.0 

(+0.8/+2.8) 
+1.5 

(+0.6/+2.4) 
+1.9 

(+0.7/+2.7) 
+1.9 

(+0.8/+2.8) 
+2.0 

(+0.9/+2.9) 

IN (nd) 0.4 
+0.5 

(+0.1/+0.9) 
+0.5 

(+0.1/+0.9) 
+0.8 

(+0.4/+1.4) 
+0.7 

(+0.3/+0.9) 
+1.2 

(+0.6/+1.8) 
+1.9 

(+0.9/+2.8 
+2.6 

(+1.2/+3.0) 
+3.4 

(+2.2/+4.6) 
+1.4 

(+0.8/+2.2) 
+3.9 

(+2.4/+5.4) 
+9.2 

(+6.0/+12.4) 
+14.8 

(+9.4/+18.2) 

Max cons 
IN (nd) 

0.2 +0.2 
(0.0/+0.5) 

+0.2 
(0.0/+0.5) 

+0.3 
(0.0/+0.5) 

+0.3 
(0.0/+0.5) 

+0.5 
(0.1/0.8) 

+0.8 
(0.3/1.2) 

+1.2 
(0.5/1.6) 

+1.6 
(0.5/3.6) 

+0.5 
(0.1/1.8) 

+1.8 
(0.5/4.6) 

+4.6 
(1.8/7.2) 

+7.2 
(3.6/10.8) 

Nº event. 
IN (ne) 0.0 

+0.1 
(+0.0/+0.2) 

+0.1 
(+0.0/+0.2) 

+0.1 
(+0.0/+0.2) 

+0.1 
(+0.0/+0.2) 

+0.1 
(+0.0/+0.3) 

+0.2 
(+0.1/+0.3) 

+0.3 
(+0.2/+0.4) 

+0.3 
(+0.2/+0.5) 

+0.2 
(+0.1/+0.3) 

+0.4 
(+0.2/+0.4) 

+0.8 
(+0.4/+1.2) 

+1.2 
(+0.6/+1.8) 
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FD (nd) 0.4 
-0.3 (-0.4/-

0.1) 
-0.2 (-

0.4/0.0) 
-0.2 (-0.4/-

0.0) 
-0.2 (-0.4/-

0.2) 
-0.4 (-0.4/-

0.2) 
-0.4 (-0.4/-

0.3) 
-0.4 (-0.4/-

0.2) 
-0.4 (-0.4/-

0.2) 
-0.4 (-0.4/-

0.3) 
-0.4 (-0.4/-

0.3) 
-0.4 (-0.4/-

0.4) 
-0.4 (-0.4/-

0.4) 

Max cons 
FD (nd) 

0.3 -0.2 (-
0.3/0.0) 

-0.2 (-
0.3/0.0) 

-0.2 (-
0.3/+0.1) 

-0.2 (-
0.3/0.0) 

-0.2 (-0.3/-
0.1) 

-0.2 (-0.3/-
0.2) 

-0.3 (-0.3/-
0.2) 

-0.3 (-0.3/-
0.2) 

-0.2 (-0.3/-
0.1) 

-0.3 (-0.3/-
0.2) 

-0.3 (-0.3/-
0.3) 

-0.3 (-0.3/-
0.3) 

Nº event. 
FD (nd) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 15-2. Summary table for expected changes in future thermal climate variables and extreme indicators from FICLIMA statistical downscaling in SAR. 
Changes are expressed as the difference in “median(percentile 10/percentile 90)” of future expected values for each SSP and time period with respect to the 

historical median reference value for the period 1981-2010. Units are expressed in the INDEX column (nd = number of days, ne = number of events). 
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INDEX 

81-10 2021-2050 2041-2070 2071-2100 

HIST. 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

Thermal indicators 

TXm 
(ºC) 

21.3 +1.1 
(+0.4/+1.7) 

+1.2 
(+0.4/+1.7) 

+1.3 
(+0.4/+1.9) 

+1.3 
(+0.5/+2.1) 

+1.5 
(+0.8/+2.3) 

+1.8 
(+1.4/+2.6) 

+2.1 
(+1.3/+3.0) 

+2.4 
(+1.6/+3.5) 

+1.6 
(+1.0/+2.5) 

+2.5 
(+1.8/+3.6) 

+3.6 
(+2..9/+4.7) 

+4.3 
(+3.4/+5.4) 

TNm 
(ºC) 15.8 

+1.0 
(+0.4/+1.7) 

+1.0 
(+0.4/+1.7) 

+1.0 
(+0.4/+1.7) 

+1.0 
(+0.4/+1.9) 

+1.5 
(+0.8/+2.3) 

+1.8 
(+1.4/+2.6) 

+2.0 
(+1.1/+2.9) 

+2.4 
(+1.6/+3.5) 

+1.5 
(+1.1/+2.3) 

+2.4 
(+1.7/+3.4) 

+3.4 
(+2.6/+4.5) 

+4.2 
(+3.1/+5.2) 

TM 
(ºC) 

18.6 +1.0 
(+0.4/+1.7) 

+1.0 
(+0.4/+1.7) 

+1.0 
(+0.4/+1.7) 

+1.1 
(+0.5/+1.8) 

+1.5 
(+0.8/+2.3) 

+1.8 
(+1.4/+2.6) 

+2.1 
(+1.3/+3.0) 

+2.4 
(+1.6/+3.5) 

+1.6 
(+1.0/+2.5) 

+2.5 
(+1.8/3.6) 

+3.5 
(+2.7/+4.6) 

+4.3 
(+3.4/+5.4) 

HWle 
(nd) 3.8 

+0.7 
(+0.0/+1.0) 

+0.8 
(+0.2/+1.2) 

+1.0 
(+0.3/+1.6) 

+1.0 
(+0.3/+1.8) 

+1.1 
(+0.2/+2.2) 

+1.6 
(+0.5/+2.7) 

+2.0 
(+0.7/+3.3) 

+2.5 
(+1.0/+4.0) 

+1.1 
(+0.2/+2.2) 

+2.9 
(+1.2/+4.6) 

+5.0 
(+2.5/+7.5) 

+7.4 
(+4.0/+10.8) 

HWix 
(ºC) 

35.2 +0.2 
(+0.4/+0.6) 

+0.1 
(+0.4/+1.1) 

+0.3 
(+0.8/+1.8) 

+0.2 
(+0.9/+2.3) 

+0.4 
(+0.6/+1.2) 

+0.6 
(+1.1/+2.2) 

+0.8 
(+1.8/+3.3) 

+0.9 
(+2.3/+4.4) 

+0.4 
(+0.6/+1.2) 

+1.1 
(+1.6/+3.2) 

+1.8 
(+2.7/+4.8) 

+2.3 
(+3.8/+6.4) 

HWf 
(ne) 0.6 

+1.3 
(+0.4/+2.2) 

+1.4 
(+0.2/+2.0) 

+1.7 
(+0.3/+2.3) 

+1.9 
(+0.4/+2.5) 

+1.9 
(+1.2/+3.1) 

+2.6 
(+1.8/+3.8) 

+3.2 
(+2.4/+4.4) 

+3.7 
(+2.9/+5.0) 

+2.1 
(+1.4/+3.3) 

-3.8 (-4.6/-
2.9) 

+4.9 
(+4.1/+5.9) 

+5.3 
(+4.5/+6.3) 

HWd 
(nd) 4.9 

+6.5 
(+4.9/+8.1) 

+6.2 
(+4.4/+8.3) 

+7.9 
(+5.5/+10.4) 

+7.8 
(+5.4/+10.3) 

+13.5 
(+5.1/+21.3) 

+17.7 
(+7.9/+25.0) 

+23.8 
(+12.9/+31.7) 

+27.3 
(+15.7/+35.1) 

+13.7 
(+4.8/+21.5) 

+31.1 
(+18.7/+37.1) 

+49.4 
(+35.1/+63.7

) 

+63.1 
(+48.3/+77.1) 

HI-P90 
(ºC) 

36.9 +1.7 
(+0.5/+2.3) 

+2.3 
(+0.5/+2.9) 

+2.5 
(+0.9/+3.6) 

+2.4 
(+0.9/+3.3) 

+2.6 
(+1.1/+3.8) 

+4.1 
(+2.8/+6.0) 

+4.6 
(+2.5/+6.3) 

+5.5 
(+3.4/+7.2) 

+3.1 
(+1.8/+4.5) 

+5.5 
(+3.4/+7.2) 

+9.1 
(+6.2/12.5) 

+12.2 
(+8.8/16.1) 
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Table 16. Summary table for expected changes in future precipitation climate variables and extreme indicators from FICLIMA statistical downscaling in SAR. 
Changes are expressed as the difference in “median(percentile 10/percentile 90)” of future expected values for each SSP and time period with respect to the 

historical median reference value for the period 1981-2010. Units are expressed in the INDEX column (nd = number of days, ne = number of events). 

INDEX 

81-10 2021-2050 2041-2070 2071-2100 

HIST. 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

Precipitation indicators 

R20 
(nd) 6.8 

+0.1 (0.3/-
0.2) 

+0.1 
(0.3/+0.3) 

+0.1 
(0.3/+0.2) 

+0.1 (-
0.3/+0.2) 

+0.2 (-
0.4/+0.3) 

+0.2 (-
0.4/+0.2) 

+0.1 (-
0.4/+0.2) 

-0.1 (-
0.4/+0.2) 

+0.1 (-
0.4/+0.2) 

-0.1 (-
0.5/+0.2) 

-0.4 (-
0.7/+0.2) 

-0.6 (-
0.8/+0.2) 

R50 
(nd) 

1.5 +0.1 (0.0/-
0.2) 

+0.2 
(+0.1/+0.3) 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.2) 

+0.2 
(+0.1/+0.3) 

+0.1 
(0.0/+0.2) 

+0.3 
(0.0/+0.2) 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.2) 

+0.2 
(0.0/+0.2) 

R100 
(nd) 0.3 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

Ra 
(mm,%) 

571 0% (-
10%/+7%) 

0% (-
8%/+6%) 

-1% (-
9%/+11%) 

+2% (-
9%/+11%) 

-1% (-
5%/+14%) 

-5% (-
12%/+11%) 

+1% (-
12%/14%) 

-6% (-
12%/+5%) 

-1% (-
8%/+10%) 

-5% (-
12%/+8%) 

-11% (-
22%/+2%) 

-12% (-
23%/+2%) 

Forest fire indicators 

Mean FWI 21.5 +1.4 (-
1.0/+3.4) 

+0.9 (-
0.1/+4.0) 

+1.2 (-
1.0/+3.2) 

+1.4 (-
0.4/+3.2) 

+1.8 (-
0.4/+3.5) 

+1.5 (-
0.4/+4.0) 

+2.4 (-
0.1/+4.5) 

+2.4 (-
0.2/+4.7) 

+1.5 (-
0.8/+2.7) 

+2.6 
(+0.6/+4.0) 

+4.0 
(+1.2/+6.4) 

+4.5 
(+1.3/+6.5) 
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FWI>38 
(nd) 18 +3.0 

(+2.5/+5.2) 
+2.0 

(+1.2/+3.8) 
+3.0 

(+2.3/+5.0) 
+3.0 

(+2.3/+5.0) 
+5.0 

(+3.3/+7.5) 
+5.0 

(+3.1/+8.1) 
+6.0 

(+4.1/+9.8) 
+7.0 

(+4.3/+10.5) 
+4.0 

(+2.5/+6.8) 
+7.0 

(+4.3/+10.2) 
+10.0 

(+6.2/+14.8) 
+11.0 

(+6.8/+15.5) 

 

 

 

Table 17. Summary table for expected changes in future wind climate variables and drought indicators from FICLIMA statistical downscaling in SAR. Changes 
are expressed as the difference in “median(percentile 10/percentile 90)” of future expected values for each SSP and time period considered with respect to 

the historical median reference value for the period 1981-2010. Units are expressed in the INDEX column (nd = number of days, ne = number of events). 

INDEX 

81-10 2021-2050 2041-2070 2071-2100 

HIST. 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

Drought indicators 

CDDx 
(nd) 

116.4 +3.9 
(+2.8/+5.0) 

+3.7 
(+2.6/+4.8) 

+4.5 
(+3.4/+5.6) 

+5.4 
(+4.3/+6.5) 

+6.1 
(+4.0/+8.2) 

+7.0 
(+5.0/+9.1) 

+10.5 
(+8.4/+12.6) 

+10.8 
(+8.7/+12.9) 

+6.7 
(+4.0/+8.3) 

+12.9 
(+9.0/+16.1

) 

+14.8 
(+12.7/+16.9) 

+18.2 
(+16.1/+20.3) 

CDDm 
(nd) 

13.0 +0.3 
(+0.1/+0.5) 

+0.5 
(+0.2/+0.8) 

+0.6 
(+0.3/+0.9) 

+0.5 
(+0.2/+0.8) 

+0.7 
(+0.3/+1.1) 

+1.2 
(+0.5/+1.7) 

+1.1 
(+0.4/+1.6) 

+1.7 
(+0.8/+2.3) 

+1.0 
(+0.4/+1.5) 

+1.5 
(+0.7/+2.0) 

+3.1 
(+1.8/+4.3) 

+3.7 
(+2.3/+5.1) 

SPI-36 0.0 
+0.1  

(-0.6/+0.4) 
+0.1  

(-0.5/+0.4) 
+0.1  

(-0.4/+0.3) 
+0.0  

(-0.6/+0.4) 
+0.2 (-

0.8/+0.4) 
-0.2 (-

1.0/+0.3) 
+0.1 (-

0.6/+0.3) 
-0.4 (-

0.8/+0.2) 
-0.1 (-

0.4/+0.3) 
-0.4 

(+0.8/+0.2) 
-0.6 

(+1.5/+0.1) 
-0.8 (-1.6/-

0.1) 

SPEI-36 0.0 -1.3 (-2.0/-
0.5) 

-1.6 (-2.1/-
0.6) 

-1.4 (-2.0/-
0.6) 

-1.7 (-2.6/-
0.4) 

-1.6 (-2.6/-
0.7) 

-2.3 (-2.9/-
1.8) 

-2.5 (-2.8/-
1.9) 

-2.9 (-3.6/-
2.2) 

-2.0 (-2.6/-
1.4) 

-3.0 (-3.6/-
2.3) 

-4.0 (-4.7/-
3.0) 

-4.6 (-5.4/-
4.0) 
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Wind indicators 

EWG 
(km/h) 68 

-2%  
(-10/+3) 

-1%  
(-7/+7) 

-1%  
(-9/+5) 

0%  
(-9/+8) 

-1%  
(-8/+5) 

-2%  
(-9/+2) 

-2%  
(-10/+2) 

0%  
(-8/+5) 

-3%  
(-9/+3) 

-2%  
(-11/+6) 

-1%  
(-8/+5) 

-3%  
(-9/+5) 
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5.1.5. Discussion for the Salzburg Region - SLZ 

IMPORTANT: In this section, it is discussed the results for the SLZ area, considering all the stations (ZAMG 
and DWD) falling within the region of interest covering the Salzburg city and its administrative area in the 
Alps, as well as the close-by German region of Upper Bavaria. Changes will be mainly discussed in what 
refers to changes in median values; due to the geographical heterogeneity, mainly due to height 
differences (valley and high-mountain) of stations, some indicators might be registered or expected in the 
future in some points, but might not be explicitly mentioned. A more detailed summary with uncertainty 
thresholds is done in the next 5.1.6 section. All summary figures will be shared and available to partners 
for detailed consultation, and the posterior spatial treatment (TIF) of results might help in identifying in 
ICARIA’s DSS, once made available, the particularities of results in the geographical extension of the CS. 

— 

Drawing from the locally generated climate change scenarios tailored for this case study, temperature 
escalation is envisaged across all scenarios, timeframes, and seasons. Particularly in SLZ, the 
geographical positioning (latitude, central Europe, and north of the Alps) suggests a probable surge in 
water availability in the atmosphere, owing to a warmer climate. This, in turn, is anticipated to influence 
precipitation estimates significantly. Projections indicate upticks in both average and extreme rainfall 
occurrences, culminating in a climate characterized by heightened warmth and moisture. 

 

Thermal indicators 

Concerning the suite of variables and indicators associated with temperature, as delineated in the 
preceding section 4.2, findings unequivocally illustrate a trajectory towards escalating temperatures in 
forthcoming years, exacerbated in more adverse SSP scenarios. 

In terms of temperature variables, median projections suggest maximum temperature hikes ranging from 
2.0 to 3.7 degrees Celsius by mid-century, with more dire scenarios projecting increases from 3.2 to 5.7 
degrees Celsius by the century's end under SSP2-4.5 and SSP5-8.5, respectively (refer to Figure 47 for 
illustration). Notably, both mean annual temperature and minimum annual temperature are anticipated to 
rise proportionally to maximum temperatures in absolute terms. Substantial and statistically significant 
upticks are anticipated across all scenarios, seasons, and temporal horizons. 
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Figure 47. Expected evolution of the mean maximum temperature for SLZ stations. 

Taking percentiles, Cold/Warm days (P10/P90 of maximum temperature, respectively) are expected to 
notably decrease/increase in the future, since taking the historic period as a reference in a percentile 
indicator causes that a warming climate boosts the number of days above P90 and reduces those below 
P10. Changes show that from the reference ~34 days/year, Cold days will reduce by 50-60% at mid-
century, and about 60-80% by 2100. Warm days on the contrary would double (+100% or +40 days) by 
mid-century and increase about 150-200% (65-78 days) by 2100.  

The change in maximum temperature will lead to changes in the indicators defined from it. As a matter of 
fact, Heat Day (Tx > 30ºC) and Extreme Heat Day (Tx>35ºC) will significantly sharply increase. Heat days, 
not so common in SLZ due to the area’s climate with a median of 5.4 historic days, would increase to a 
range of 20 to 30 days a year by 2050, and of more than 25-50 days by 2100 in worst-case scenarios (see 
Figure 47). Extreme Heat days would follow this trend, even being exceptionally rare nowadays in SLZ, 
with just some records in very few stations (median of 0.0). These days would see a significant increase 
passing mid-century of +2-4 days on average and +4-15 by late-century. 

The increase in minimum temperatures will lead to a significant large decrease in the number of frost 
days. Frost nights are a regular event in SLZ climate during winter months and even other seasons, with 
122 average nights per year in the area. The decrease by the middle of the century is expected by around 
-25% (-35 nights), increasing by late-century to -33/-66% (from -44 up to -70 nights) in worst-case 
scenarios (SSP3-7.0 and 5-8.5). This change in minimum temperature is also expected during the summer 
season, and will also lead to the regular appearance of tropical nights (Tmin>20ºC), a pretty rare situation 
in SLZ region nowadays, with around 1.5 nights per year if so.  Significant increases are already expected 
in the earliest time period, increasing steeply up to from +4-7 nights by 2050 and to even around +17-28 
in worst cases by 2100 (Figure 49). This trend translates too to equatorial nights (Tmin >25ºC) and infernal 
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nights (Tmin >30ºC), both practically non-existent in this area. Equatorial nights and Infernal nights 
would go from 0 to around 1-2.5 nights and 0.5 by 2100 respectively. 

 

Figure 48. Expected evolution of the annual number of heat days for SLZ stations. 

 

 

Figure 49. Expected evolution of the number of tropical nights for SLZ stations. 
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Aside from the previous discussion, and in order to better understand and assess further impacts of 
previous indicators, two derivatives were applied, calculating the maximum number of consecutive days of 
each previous indicator, and also the number of events (considered as ≥3 consecutive days) expected 
throughout the year. Regarding maximum consecutive days, Heat Day could go from a typical 2.5-day 
streak in historic times to around 5-7 days by 2050 or more than 7-14 days by 2100. Extreme Heat Days, 
practically not seen, could chain 2 up to more than 5 days in a row by late-century. Frost days will reduce 
significantly, from 36 nights in a row historically to around 20 by 2050 or 15 by 2100. Warm nights would 
increase, with Tropical Nights going from non-existent to 7-11 nights in a row in the worst case by 2100. 
Equatorial nights and Infernal nights are not expected to chain significantly in the future. Concerning 
the number of events, Heat Day would go from a reference 0.3 events a year to 2-4 during the century 
(the increase is expected in the number of consecutive days). The same happens for Extreme Heat Day, 
with almost 1 event a year by 2100. About Frost days, 7.7 events were registered on average in past times, 
with decreases foreseen of -1.5 to -3.5 by 2100. Tropical night events would go from none to 2 by 2100, 
while no event is expected for Equatorial nights or infernal nights so far. 

 

Additionally,, the increase in temperatures will affect the occurrence of extreme weather events such as 
heat waves, which are one of the more impactful events due to their effects on human health, 
infrastructure or the environment. Therefore, the length, intensity, and frequency of heat waves must be 
analysed to characterize these extreme weather events. The heat wave definition was created for ICARIA 
considering several climate and scientific conditions, and ended up being: a temperature-related episode 
of at least three consecutive days where the weather observations considered register maximum 
temperatures above the 95% percentile of their daily maximum temperature records for the months of 
June to September of the 1981-2010 period. 

Heat wave impacts are expected to increase significantly since the projections indicate a very relevant 
rise in the intensity, length, and number of events in most scenarios by mid-century and end-century.  

Emerging from a percentile-based definition, historical records indicate approximately 0.5 heatwave 
events on average. This historical context underscores the significance of gauging the scale of change. 
Projections suggest a notable escalation in heatwave occurrences, with an increase of around 3 events 
per year on average by mid-century, surging to 4 to 6 events per year by late-century across SSP2-4.5 to 
SSP5-8.5 scenarios (see Figure 50). 

The average length of heatwaves is expected to extend from 3.5 days historically to 5-6 days by mid-
century, with a substantial increase in the most pessimistic SSP5-8.5 scenarios, where durations could 
reach 6-8 days (Figure 51). Furthermore, intensification is projected in the maximum heatwave intensity, 
initially set at a median of 31.2ºC for SLZ. Although early-century changes are anticipated to be negligible, 
by mid-century and late-century, intensities could elevate by approximately +1.5ºC to +3.0ºC in the most 
pessimistic scenarios. 

Anticipated changes also extend to the annual count of days meeting the definition of heatwave days, 
experiencing temperatures exceeding the 95th percentile but excluding consecutive occurrences. This 
count is poised to surge from a historical 5 days to over 20 (up to 30) by 2050, potentially escalating to 
30 to 60 days by 2100. 
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Figure 50. Expected evolution of the annual number of heat waves for SLZ stations. 

 

 

Figure 51. Expected evolution of the average duration of heat waves for SLZ stations. 
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Some indicators are often used to characterize thermal comfort, which is the case for the commonly used 
Heat Index (HI), which results from a combination of temperature and RH about certain thresholds and 
represents the body's thermal sensation at some point. Heat Index represents that for certain T/RH values, 
the heat stress that a body can suffer, dangerous at some point, has nothing to do with the actual 
temperature that is being recorded.  

For SLZ, reference measured HI oscillates around 31.4ºC, and is expected to significantly increase in the 
future due to rising temperatures and a typical moist environment, especially during summer, which is the 
wettest season in SLZ and will see an increase in rainfall.. In this regard, increases of +2-3ºC are foreseen 
by mid-century, while further rises of +4-7ºC in worst-case scenarios are feasible by late-century (refer to 
Figure 52 for more detail). 

 

 

Figure 52. Expected evolution of the percentile 90 of Heat Index for SLZ stations. 

 

 

 

 

 

Precipitation indicators 
Regarding precipitation indicators, different ones have been obtained depending on the needs of the SLZ 
CS. In this regard, some indicators were designed to measure changes in annual precipitation while other 
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indicators were more focused on extreme rainfall events. In this sense, in summary, no significant change 
is expected in yearly precipitation so far nor in days above specific extreme thresholds, but an increase in 
precipitation intensity at the sub-hourly scale is foreseen. 

In more detail, about annual precipitation indicators, yearly cumulative precipitation as well as seasonal 
cumulative precipitation display significant changes towards the future, as can be seen in Figure 53. 
Increases are expected from mid-century, of about +10% by 2050 and larger up to +11% even +20% in 
SSP5-8.5. This is linked to a warmer atmosphere holding more moisture, and thanks to SLZ location in an 
area prone to low-pressure systems and thunderstorms all year long, climate change would affect the 
region towards a wetter climate. 

 

Figure 53. Expected evolution of annual cumulative precipitation for SLZ stations. 

In what refers to extreme rainfall events, some indicators of these events are obtained for days above 20, 
50 and 100mm. In the three cases, the changes with respect to historical observed days (20.8, 3.3 and 0.2 
respectively) are significant increases following what was previously discussed. For >20mm days (Figure 
54), increases in +4-7 days by 2100 is expected, with +1-3 days and +0.5 days for >50mm and >100mm 
respectively. 

Studying sub-daily precipitation also allows us to know the behaviour of rainfall at these time scales. 
Continental climate does not see too many downpours out of summer, but future climate will increase the 
likelihood of these events, posing a big threat for extremely torrential downpours. In this regard, IDF curves 
and CCF index was obtained for sub-hourly rain at 1, 2, 5, 10, 20, 50, 100 and 500 years respectively. 
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Figure 54. Expected evolution of precipitation days with >20mm accumulations for SLZ stations. 

 

 

Figure 55. Example of the CCF for Salzburg region. Y axis represents the CCF, X axis the duration in minutes. 
Each line represents the CCF for a specific period (15-40, 41-70, 71-00 for the red, green and blue respectively). 
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Results for CCF (which encompasses IDF as well), shown in Figure 55, are interpreted as values greater 
than 1 indicating an increase in the IDF rates. As the forecast examples show, they are expected especially 
in the worst-case scenarios (SSP3-7.0 and 5-8.5), and significantly in the low duration scales (<10 min in 
the X axis) and for the last period of the century (2071-2100 or the blue lines). This translates as changes 
foreseen of about +20-40% in the intensity of rainfall.  

Regarding its behavior among the case studio areas, it can be observed that for the Salzburg region the 
values are slightly higher than those observed for the case of the Metropolitan Area of Barcelona (AMB) 
with rate values above 1.5 in the warmest scenarios. This is consistent with the fact that the maximum 
water-air capacity is expected to increase more in Central Europe than in the Mediterranean region. 
Although positive CCF values are observed in Barcelona, the increase in drought duration in Southern 
Europe may partially counteract the increase in the maximum water-air capacity itself, especially in the 
lowest return periods, resulting in lower CCF values. 

 

Drought indicators 
In what concerns to drought, two types of indicators were agreed on in their calculation, those related to 
dry days (dry spell duration), and those with anomalies in precipitation/evapotranspiration (SPI & SPEI). 
For the first type, it was defined as a “dry day” a day with precipitation registered below 1mm, and two 
indicators were calculated: mean length of dry spell and maximum length of dry spell.  About the Mean 
length of dry spell, for SLZ the historical yearly value was around 3.8 days, with no significant changes 
expected in the future at all. Regarding  the Maximum length of a dry spell, the historical reference value 
is 17.6 days, and again no change whatsoever is foreseen for the future. 

Regarding the SPI and SPEI indexes; due to their definition, historic value is always set to 0, and expected 
changes differ from one to another. For SPI, and associated with a significant expected increase in 
precipitation in the future, significant increments are expected by mid or late century in any scenario or 
time period, about +1-1.5 by 2050 and a more important +2-3 by 2100  (Figure 56). However, for SPEI, since 
it includes changes in temperature for the estimation of evapotranspiration, changes are not expected. 
Following an increase in temperature and increments in rainfall, SPEI values are projected to remain similar 
(more heat will contribute to evapotranspirate the extra rainfall expected) for all time periods and 
scenarios. Similar results are expected in other monthly-aggregated SPI and SPEI (1,3,6,12, 24).  
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Figure 56. Expected evolution of 36-month length SPI for SLZ stations. 

 

Wind indicator 
Wind is one of the most difficult meteorological variables to be studied when dealing with future climate 
change variations.  Due to its own nature, a result of multiple factors such as orography, local thermal 
variations, pressure gradients, or other weather phenomena, the future study of wind is not as 
straightforward as temperature could be, and future changes in pressure centres and other atmospheric 
patterns that determine wind’s strength and direction is still today prone to high uncertainties. Besides, 
the remarkable lack of wind observations or their poor quality with respect to those from temperature or 
precipitation also hinders the procedures in statistical downscaling. On the other hand, as it can be seen 
in Annex 4 (Table A3.1), only 6 (out of 7) models have passed validation tests for the methodology and are 
used to produce these outcomes. It is good advice to take into account the aforementioned difficulty to 
work with the wind when interpreting the next results. 

 

In this sense, wind gust has been modelled for the future since it is a variable that poses a higher risks and 
interest for ICARIA, and is included in other multiple indicators. The future evolution is studied for 
percentiles since it doesn’t respond to a normal distribution and mean values are meaningless. For SLZ, 
Percentile 99, as well as other percentiles (P80, P90 or P100) don't’ seem to show any change in its 
expected behaviour in the future. Remarkable outliers are seen corresponding to stations located in high-
mountain areas. 

 

In Salzburg, a slight downward trend is observed during the first half of the twenty-first century, however, 
there is a general consensus that there will be little variation during the second half of the century (Figure 
57). 
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Figure 57. Results for wind gust projections for Return Period of 20 years and for SLZ stations. 
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5.1.6. Summary of results for the Salzburg Region - SLZ 

Table 18-1. Summary table for expected changes in future thermal climate variables and extreme indicators from FICLIMA statistical downscaling in SLZ. 
Changes are expressed as the difference in “median(percentile 10/percentile 90)” of future expected values for each SSP and time period with respect to the 

historical median reference value for the period 1981-2010. Units are expressed in the INDEX column (nd = number of days, ne = number of events). 

INDEX 

81-10 2021-2050 2041-2070 2071-2100 

HIST. 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

Thermal indicators 

TX90 
 (nd) 

34.6 
+19.5 

(+10.5/+32) 
+18.5 

(+9.5/+31.5) 
+18.3 

(+9.3/+31.3) 
+20.4 

(+11.4/+33.4) 
+29.4 

(+20.4/+42) 
+34.2 

(+25.2/+47) 
+40.3 

(+31.3/+53) 
+45.6 

(+36.6/+58) 
+30.5 

(+21.5/+43) 
+46.9 

(+37.9/+61) 
+64.8 

(+55.8/+78) 
+78.3 

(+69.3/+91) 

TX10 
 (nd) 33.7 

-7.9 (-
12.2/+1.9) 

-9.0 (-
12.3/+0.2) 

-8.6 (-
14.7/+2.7) 

-11.6 (-
18.3/-3.1) 

-12.8 (-
20.2/-2.4) 

-15.1 (-
22.7/-7.1) 

-16.4 (-
25.4/-9.2) 

-19.7 (-
27.7/-11.4) 

-13.9 (-
22.4/-5.4) 

-18.7 (-
27.2/-9.3) 

-24.9 (-
33.4/-16.3) 

-27.9 (-
36.6/-19.1) 

HD 
(nd) 

5.4 +8.0 
(+4.1/+11.3) 

+9.8 
(+4.9/+13.1) 

+9.8 
(+5.2/+13.1) 

+11.3 
(+5.1/+14.2) 

+27.0 
(+17.5/+42.3) 

+32.3 
(+22.8/+47) 

+39.0 
(+29.5/+54) 

+45.6 
(+35.1/+61.1) 

+11.9 
(+6.2/+18.1) 

+21.4 
(+12.8/+34.1) 

+36.3 
(+28.5/+48) 

+45.5 
(+34.4/+65) 

Max cons 
HD (nd) 2.4 +1.6 

(+0.7/+3.5) 
+1.6 

(+0.6/+4.0) 
+2.0 

(+0.6/+4.1) 
+1.6 

(+0.7/+3.5) 
+2.7 

(+1.0/+4.3) 
+3.5 

(+1.7/+5.7) 
+4.3 

(+2.0/+5.3) 
+5.3 

(+2.6/+7.2) 
+2.6 

(+1.0/+4.7) 
+4.7 

(+2.2/+8.3) 
+8.3 

(+4.3/+12.2) 
+12.2 

(+5.3/+16.2) 

Nº event. 
HD (ne) 0.3 

+0.7 
(+0.2/+1.2) 

+0.8 
(+0.3/+1.3) 

+0.8 
(+0.3/+1.3) 

+0.8 
(+0.3/+1.3) 

+1.3 
(+0.7/+1.8) 

+1.8 
(+1.2/+2.3) 

+1.9 
(+1.3/+2.4) 

+2.4 
(+1.8/+3.0) 

+1.3 
(+0.7/+1.8) 

+2.2 
(+1.6/+2.7) 

+3.6 
(+2.9/+4.2) 

+4.2 
(+3.5/+4.8) 

EHD (nd) 0.0 +0.4 
(+0.0/+1.0) 

+0.7 
(+0.2/+1.4) 

+0.6 
(+0.1/+1.3) 

+0.5 
(+0.0/+1.2) 

+1.0 
(+0.5/+2.0) 

+2.0 
(+1.0/+3.1) 

+3.1 
(+1.8/+4.3) 

+3.8 
(+2.4/+5.4) 

+1.2 
(+0.6/+3.6) 

+3.6 
(+2.2/+9.7) 

+9.7 
(+6.5/+20.4) 

+15.4 
(+10.7/+29.1) 
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Max cons 
EHD (nd) 0.0 

+0.3 
(+0.0/+0.8) 

+0.6 
(+0.2/+1.2) 

+0.5 
(+0.1/+1.0) 

+0.4 
(+0.0/+0.8) 

+0.7 
(+0.3/+1.4) 

+1.2 
(+0.5/+2.0) 

+1.6 
(+0.7/+2.7) 

+2.0 
(+0.9/+3.4) 

+0.9 
(+0.4/+1.8) 

+1.8 
(+0.8/+3.0) 

+3.9 
(+1.6/+6.4) 

+5.2 
(+2.4/+8.4) 

Nº event. 
EHD (ne) 

0.0 +0.0 
(0.0/0.0) 

+0.0 
(0.0/0.0) 

+0.0 
(0.0/0.0) 

+0.0 
(0.0/0.0) 

+0.0 
(0.0/+0.2) 

+0.0 
(0.0/+0.2) 

+0.1 
(0.0/+0.3) 

+0.2 
(+0.0/+0.8) 

+0.0 
(0.0/+0.2) 

+0.2 
(+0.0/+0.8) 

+0.8 
(+0.2/+1.5) 

+1.5 
(+0.8/+2.2) 

TR (nd) 1.5 
+0.9 

(+0.3/+2.0) 
+1.8 

(+0.5/+3.7) 
+1.8 

(+0.4/+3.5) 
+2.0 

(+0.4/+3.6) 
+2.0 

(+1.2/+4.2) 
+3.5 

(+2.3/+6.6) 
+5.1 

(+3.7/+8.6) 
+6.9 

(+5.2/+11.4) 
+2.2 

(+1.4/+4.6) 
+6.6 

(+4.7/+11.7) 
+17.0 

(+12.1/+29.1) 
+28.4 

(+18.2/+43) 

Max cons 
TR (nd) 

0.4 +0.5 
(+0.2/+1.0) 

+0.7 
(+0.3/+1.3) 

+0.7 
(+0.3/+1.3) 

+0.6 
(+0.2/+1.0) 

+1.1 
(+0.6/+2.0) 

+1.8 
(+0.8/+3.2) 

+2.4 
(+1.0/+4.4) 

+3.3 
(+1.8/+5.4) 

+1.3 
(+0.8/+2.4) 

+3.2 
(+1.8/+5.4) 

+7.3 
(+3.8/+12.2) 

+11.6 
(+6.0/+18.6) 

Nº event. 
TR (ne) 0.1 +0.0 

(0.0/0.0) 
+0.0 

(0.0/+0.1) 
+0.0 

(0.0/+0.1) 
+0.0 

(0.0/+0.1) 
+0.1 

(0.0/+0.2) 
+0.2 

(0.0/+0.3 
+0.3 

(+0.1/+0.5) 
+0.5 

(+0.2/+0.8) 
+0.1 

(0.0/+0.2) 
+0.5 

(+0.2/+0.8) 
+0.9 

(+0.4/+1.4) 
+2.2 

(+1.0/+3.4) 

EQ (nd) 0.6 
+0.3 

(+0.1/+0.5) 
+0.3 

(+0.1/+0.5) 
+0.3 

(+0.1/+0.5) 
+0.3 

(+0.1/+0.5) 
+0.4 

(+0.2/+0.6) 
+0.5 

(+0.3/+0.7) 
+0.6 

(+0.3/+0.9) 
+0.7 

(+0.4/+1.0) 
+0.5 

(+0.3/+0.7) 
+0.7 

(+0.4/+1.0) 
+1.4 

(+0.7/+2.3) 
+2.3 

(+1.2/+3.2) 

Max cons 
EQ (nd) 

0.1 +0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.1 (0.0/-
0.1) 

+0.2 
(+0.0/+0.3) 

+0.2 
(+0.1/+0.3) 

+0.3 
(+0.2/+0.5) 

+0.1 
(+0.0/+0.2) 

+0.2 
(+0.1/+0.3) 

+0.6 
(+0.4/+1.1) 

+1.2 
(+0.7/+1.8) 

Nº event. 
EQ (ne) 0.1 

+0.0 
(0.0/0.0) 

+0.0 
(0.0/0.0) 

+0.0 
(0.0/0.0) 

+0.0 
(0.0/0.0) 

+0.0 
(0.0/0.0) 

+0.0 
(0.0/0.0) 

+0.0 
(0.0/0.0) 

+0.0 
(0.0/+0.1) 

+0.0 
(0.0/0.0) 

+0.0 
(0.0/+0.1) 

+0.1 
(0.0/+0.2) 

+0.1 
(0.0/+0.4) 

IN (nd) 0.1 +0.1 
(0.0/+0.1) 

+0.1 
(0.0/+0.1) 

+0.1 
(0.0/+0.1) 

+0.1 
(+0.1/+0.1) 

+0.2 
(+0.2/+0.4) 

+0.3 
(+0.1/+0.4) 

+0.3 
(+0.1/+0.4) 

+0.4 
(+0.3/+0.4) 

+0.2 
(+0.2/+0.4) 

+0.4 
(+0.3/+0.6) 

+0.7 
(+0.5/+0.9) 

+0.8 
(+0.6/+1.1) 

Max cons 
IN (nd) 0.0 

+0.0 
(0.0/+0.1) 

+0.0 
(0.0/+0.1) 

+0.0 
(0.0/+0.2) 

+0.0 
(0.0/+0.1) 

+0.0 
(0.0/+0.1) 

+0.1 
(0.0/+0.3) 

+0.1 
(+0.1/+0.3) 

+0.1 
(0.0/+0.3) 

+0.0 
(0.0/+0.1) 

+0.1 
(0.0/+0.3) 

+0.2 
(+0.2/+0.4) 

+0.2 
(+0.2/+0.6) 

Nº event. 
IN (ne) 0.0 +0.0 

(0.0/+0.1) 
+0.0 

(0.0/+0.1) 
+0.0 

(0.0/+0.1) 
+0.0 

(0.0/+0.1) 
+0.0 

(0.0/+0.1) 
+0.0 

(0.0/+0.1) 
+0.0 

(0.0/+0.1) 
+0.0 

(0.0/+0.1) 
+0.0 

(0.0/+0.1) 
+0.0 

(0.0/+0.1) 
+0.1 

(+0.1/+0.1) 
+0.1 

(+0.1/+0.1) 

FD (nd) 122.2 -16.3 (- -17.6 (- -16.6 (- -21.1 (- -25.9 (- -32.6 (- -36.4 (- -43.4 (- -29.7 (- -43.9 (- -59.2 (- -70.5 (-
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26.9/-14.4) 31.2/-5.4) 32.1/-2.8) 36.7/-7.9) 41.5/-22.5) 48.2/-22.2) 52.0/-30) 58.0/-34.1) 43.5/-20.5) 59.0/-34.1) 74.8/-43.9) 86.1/-54.2) 

Max cons 
FD (nd) 

36.1 -5.9 (-
11.4/2.3) 

-6.3 (-
12.0/3.1) 

6.7 (-
0.2/14.5) 

-7.4 (-
12.8/0.4) 

-9.3 (-
15.1/0.8) 

11.8 (-
3.3/20.8) 

13.3 (-
1.2/24.2) 

-15.2 (-
20.7/-7.7) 

-11.0 (-
16.6/0.2) 

-14.8 (-
20.3/-7.2) 

-19.8 (-
25.5/-13.1) 

-23.3 (-
28.8/-16.8) 

Nº event. 
FD (nd) 7.7 -0.7 (-

1.3/0.6) 
-0.6 (-

1.7/+0.6) 
-0.6 (-

1.7/+0.6) 
-0.7 (-

1.3/+0.6) 
-0.9 (-

1.3/+0.2) 
-0.9 (-
1.3/1.8) 

-1.3 (-2.1/-
0.3) 

-1.7 (-2.6/-
0.7) 

-1.2 (-2.0/-
0.2) 

-1.8 (-2.6/-
0.4) 

-2.6 (-3.6/-
1.8) 

-3.6 (-5.0/-
2.4) 
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Table 18-2. Summary table for expected changes in future thermal climate variables and extreme indicators from FICLIMA statistical downscaling in SLZ. 
Changes are expressed as the difference in “median(percentile 10/percentile 90)” of future expected values for each SSP and time period with respect to the 

historical median reference value for the period 1981-2010. Units are expressed in the INDEX column (nd = number of days, ne = number of events). 
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INDEX 

81-10 2021-2050 2041-2070 2071-2100 

HIST. 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

Thermal indicators 

TXm 
(ºC) 

11.9 +1.5 
(+0.9/+2.1) 

+1.7 
(+0.9/+2.1) 

+1.7 
(+1.0/+2.2) 

+1.9 
(+1.1/+2.4) 

+1.9 
(+1.4/+2.5) 

+2.5 
(+1.9/+3.1) 

+2.8 
(+2.2/+3.4) 

+3.3 
(+2.7/+3.9) 

+2.0 
(+1.5/+2.6) 

+3.2 
(+2.6/+3.8) 

+4.7 
(+4.1/+5.3) 

+5.7 
(+5.1/+6.3) 

TNm 
(ºC) 3.2 

+1.2 
(+0.8/+1.8) 

+1.3 
(+0.8/+1.8) 

+1.2 
(+0.8/+1.8) 

+1.4 
(+0.8/+2.0) 

+1.8 
(+1.2/+2.3) 

+2.4 
(+1.7/+2.7) 

+2.6 
(+1.8/+3.1) 

+3.0 
(+2.5/+3.8) 

+2.0 
(+1.6/+2.4) 

+3.1 
(+2.1/+3.5) 

+4.3 
(+3.8/+4.6) 

+5.3 
(+4.6/+5.8) 

TM 
(ºC) 

7.5 +1.3 
(+0.8/+1.8) 

+1.3 
(+0.8/+1.8) 

+1.3 
(+0.8/+1.8) 

+1.5 
(+1.0/+2.0) 

+1.9 
(+1.4/+2.5) 

+2.4 
(+1.8/+2.9) 

+2.7 
(+2.0/+3.3) 

+3.2 
(+2.6/+4.1) 

+2.0 
(+1.6/+2.5) 

+3.1 
(+2.3/+3.7) 

+4.6 
(+4.0/+5.1) 

+5.6 
(+5.0/+6.2) 

HWle 
(nd) 3.5 

+0.4 
(+0.1/+0.7) 

+0.6 
(+0.2/+0.9) 

+0.9 
(+0.3/+1.2) 

+0.7 
(+0.2/+1.0) 

+1.0 
(+0.4/+1.3) 

+1.3 
(+0.5/+1.6) 

+1.6 
(+0.6/+1.9) 

+2.1 
(+0.9/+3.0) 

+1.1 
(+0.4/+1.4) 

+1.9 
(+0.8/+2.8) 

+3.1 
(+1.1/+4.0) 

+4.0 
(+1.4/+5.0) 

HWix 
(ºC) 

31.2 +0.6 
(0.0/1.4) 

+0.7 
(0.1/1.5) 

+0.6 
(0.0/1.4) 

+0.5 
(0.0/1.2) 

+0.7 
(0.1/1.5) 

+1.1 
(0.3/2.1) 

+1.5 
(0.5/2.7) 

+1.8 
(0.8/3.1) 

+0.8 
(0.2/1.7) 

+1.7 
(0.6/3.1) 

+2.6 
(1.0/4.0) 

+3.1 
(1.4/4.6) 

HWf 
(ne) 

0.6 +1.3 
(+0.2/+2.8) 

+1.4 
(+0.2/+2.9) 

+1.4 
(+0.2/+2.9) 

+1.4 
(+0.2/+2.9) 

+2.2 
(+0.9/+3.7) 

+2.8 
(+1.4/+4.3) 

+3.3 
(+1.7/+4.8) 

+3.8 
(+2.4/+5.3) 

+2.0 
(+0.8/+3.5) 

+3.7 
(+2.3/+5.2) 

+5.5 
(+3.9/+7.1) 

+6.5 
(+4.9/+8.1) 

HWd 
(nd) 

5.1 
+7.4 

(+4.2/+12.6) 
+8.9 

(+5.4/+14.3) 
+8.7 

(+5.3/+14.0) 
+9.1 

(+5.2/+14.5) 
+14.4 

(+8.1/+22.3) 
+18.5 

(+10.9/+28.1) 
+20.7 

(+12.4/+31.4) 
+26.7 

(+18.3/+38) 
+13.9 

(+7.6/+21.7) 
+25.6 

(+17.2/+35.8
) 

+44.0 
(+28.2/+59) 

+56.5 
(+38.4/+74.1

) 

HI-P90 
(ºC) 

31.4 +1.4 
(+0.6/+2.1) 

+1.4 
(+0.7/+2.1) 

+1.7 
(+0.7/+2.4) 

+1.7 
(+0.6/+2.1) 

+2.1 
(+1.3/+3.1) 

+2.8 
(+1.8/+4.0) 

+3.1 
(+2.1/+4.0) 

+3.7 
(+2.7/+4.7 

+2.1 
(+1.3/+3.1) 

+4.0 
(+2.8/+5.2) 

+5.7 
(+4.2/+7.2) 

+7.2 
(+5.7/+8.7) 
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Table 19. Summary table for expected changes in future precipitation climate variables and extreme indicators from FICLIMA statistical downscaling in SLZ. 
Changes are expressed as the difference in “median(percentile 10/percentile 90)” of future expected values for each SSP and time period with respect to the 

historical median reference value for the period 1981-2010. Units are expressed in the INDEX column (nd = number of days, ne = number of events). 

INDEX 

81-10 2021-2050 2041-2070 2071-2100 

HIST. 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

Precipitation indicators 

R20 
(nd) 20.8 

+1.5 
(+0.5/+2.5) 

+1.6 
(+0.5/+2.5) 

+1.8 
(+1.0/+3.0) 

+1.9 
(+1.0/+3.5) 

+2.0 
(+1.0/+3.0) 

+2.9 
(+2.0/+4.0) 

+3.5 
(+2.5/+5.0) 

+4.0 
(+3.0/+5.5) 

+2.8 
(+2.0/+4.0) 

+4.2 
(+3.0/+5.5) 

+5.8 
(+4.0/+7.5) 

+7.0 
(+5.0/+9.0) 

R50 
(nd) 

3.3 +0.6 
(+0.0/+1.2) 

+0.6 
(+0.0/+1.2) 

+0.6 
(+0.2/+1.4) 

+0.8 
(+0.3/+1.6) 

+1.0 
(+0.4/+1.6) 

+1.2 
(+0.6/+1.8) 

+1.4 
(+0.6/+2.0) 

+1.6 
(+0.8/+2.6) 

+1.0 
(+0.4/+1.6) 

+1.6 
(+0.8/+2.4) 

+2.3 
(+1.0/+3.2) 

+2.9 
(+1.2/+4.0) 

R100 
(nd) 0.2 

+0.1 (0.0/-
0.2) 

+0.1 (0.0/-
0.2) 

+0.1 (0.0/-
0.2) 

+0.2 
(+0.1/-0.3) 

+0.2 (0.1/-
0.3) 

+0.2 (0.1/-
0.3) 

+0.3 
(+0.2/-0.4) 

+0.3 
(+0.2/-0.4) 

+0.2 (0.1/-
0.3) 

+0.3 
(+0.2/-0.4) 

+0.5 
(+0.3/-0.6) 

+0.6 
(+0.4/-0.7) 

Ra 
(mm,%) 

1613 
+5% 

(+2%/+9%) 
+5% 

(+2%/+9%) 
+6% 

(+3%/+10%) 
+6% 

(+3%/+10%) 
+6% 

(+3%/+10%) 
+8% 

(+4%/+13%) 
+11% 

(+6%/+16%) 
+12% 

(+7%/+17%) 
+9% 

(+5%/+14%) 
+13% 

(+7%/+19%) 
-18% (-23%/-

13%) 
+21% 

(+14%/+27%) 

IDF - CCF 
100y 57 

+1% (-
4%/13%) 

+8% (-
4%/14%) 

+13% (-
8%/16%) 

+7% (-
9%/14%) 

+12% 
(3%/20%) 

+18% 
(2%/31%) 

+19% 
(1%/32%) 

+24% 
(1%/37%) 

+16% 
(0%/23%) 

+22% 
(7%/33%) 

+30% 
(11%/46%) 

+36% 
(11%/47%) 
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Table 20. Summary table for expected changes in future wind climate variables and drought indicators from FICLIMA statistical downscaling in SLZ. Changes 
are expressed as the difference in “median(percentile 10/percentile 90)” of future expected values for each SSP and time period considered with respect to 

the historical median reference value for the period 1981-2010. Units are expressed in the INDEX column (nd = number of days, ne = number of events). 

INDEX 

81-10 2021-2050 2041-2070 2071-2100 

HIST. 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

Drought indicators 

CDDx 
(nd) 17.6 

-0.1 (-
0.3/+0.2) 

-0.8 
(1.0/+0.6) 

-0.7 (-
1.0/+0.8) 

-0.1 (-
0.3/+0.2) 

-0.3 (-
0.4/+0.2) 

+0.1 (-
0.2/+0.2) 

-0.3 (-
0.4/+0.2) 

-0.1 (0.0/-
0.2) 

-0.6 (-
0.9/+0.2) 

-0.3 (-
0.5/+0.2) 

+0.3 (-
0.2/+0.6) 

+0.1 (-
0.2/+0.5) 

CDDm 
(nd) 

3.8 +0.0 (-
0.2/+0.2) 

+0.0 (-
0.1/+0.3) 

-0.1 (-
0.2/+0.2) 

+0.0 (-
0.3/+0.2) 

-0.1 (-
0.2/+0.3) 

+0.0 (-
0.2/+0.2) 

+0.0 (-
0.3/+0.2) 

+0.0 (-
0.2/+0.2) 

-0.1 (-
0.4/+0.2) 

+0.1 (-
0.4/+0.2) 

+0.1 (-
0.2/+0.4) 

+0.1 (-
0.2/+0.4) 

SPI-36 0.0 +0.8 
(+0.1/+1.5) 

+1.0 
(+0.2/+1.6) 

+1.0 
(+0.3/+1.7) 

+1.1 
(+0.4/+1.8) 

+1.1 
(+0.5/+1.9) 

+1.4 
(+0.7/+2.2) 

+1.7 
(+0.9/+2.5) 

+1.7 
(+1.1/+2.6) 

+1.5 
(+0.9/+2.3) 

+2.0 
(+1.3/+2.8) 

+2.4 
(+1.7/+3.2) 

+2.9 
(+2.1/+3.7) 

SPEI-36 0.0 
+0.1  

(-0.6/+0.5) 
+0.3  

(-0.5/+0.7) 
+0.3  

(-0.4/+0.6) 
+0.2  

(-0.6/+0.7) 
+0.0 (-

0.8/+0.7) 
+0.0 (-

0.8/+0.3) 
+0.2 (-

0.6/+0.3) 
+0.1 (-

0.8/+0.7) 
+0.3 (-

0.4/+0.5) 
+0.2 (-

0.7/+0.8) 
0.0 (-

1.1/+1.1) 
+0.1 (-

1.6/+1.5) 

Wind indicators 

EWG 
(km/h) 

74 -6%  
(-20/+6) 

-2%  
(-14/+2) 

-11%  
(-23/+9) 

-11%  
(-21/+4) 

-13%  
(-26/+10) 

-8%  
(-23/+6) 

-8%  
(-19/+3) 

-7%  
(-20/+3) 

-8%  
(-21/+3) 

-7%  
(-18/+5) 

-6%  
(-21/+6) 

-7%  
(-19/+11) 
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5.2. Dynamical downscaling outputs 

 
 
It is important to note that the results analysed below display a part of the available data and is not by 
all means complete. After completion of the climate projections, hourly values for different parameters 
(temperature, precipitation, wind, cloud cover, radiation, humidity, geopotential, pressure,...) are 
available, allowing the detailed analysis of different time scales (f.i. hourly / 3 hourly etc). In total, there 
are 24 files per day, for 119 years (1981 - 2100), which amounts to more than 1 million output files. The 
analysis needed for the case studies will be defined in the upcoming weeks, depending on stakeholder 
communication needs and damage assessment models. 
 

5.2.1. The South Aegean Region 

Thermal indicators 
 

The WRF results of the South Aegean region display an increase in yearly mean temperatures of 
about 2°C until the end of the century in the SSP126 and up to 5°C within SSP585.  
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Figure 58: yearly mean temperatures as simulated by WRF for SSP126 (top ) and SSP585 
(bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid century and the reference period 
(respectively).  

 

Regarding the yearly maximum temperatures, a similar magnitude is computed as for the yearly mean 
temperatures within SSP126 and SSP585. Further, it’s important to note that within SSP126 the 
increase in temperature is the same for the mid to late century (whereas SSP585 strongly increases 
towards 2100), highlighting the need for climate mitigation measures! 
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Figure 59: yearly mean temperatures as simulated by WRF for SSP126 (top ) and SSP585 
(bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid century and the reference period 
(respectively).  

 

The change in yearly mean and maximum temperature relate to an increase in tropical nights (tmin > 
20°C) by up to 20 nights in SSP126, while an increase by more than 40 can be expected within the 
high emission scenario. Added to the already occurring high number of tropical nights (70-90 in the 
historical period), this corresponds to 3-4 months of continuous high nighttime temperatures.
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Figure 60: number of tropical nights as simulated by WRF for SSP126 (top ) and SSP585 
(bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid century and the reference period 
(respectively).  

 

Not only the number of tropical nights, but also the number of days with maximum temperatures 
above 30°C is increasing over the summer period with the same magnitude . 
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Figure 61: number of heat day (tmay > 30°C) as simulated by WRF for SSP126 (top ) and SSP585 
(bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid century and the reference period 
(respectively).  

 

Precipitation indicators 
 

The annual mean precipitation rate is slightly decreasing within SSP126 as simulated by WRF, but 
especially SSP585 indicates a strong drop for the South Aegean islands by mid-century, intensifying 
until 2100. 
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Figure 62: annual mean precipitation rate as simulated by WRF for SSP126 (top ) and SSP585 
(bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid century and the reference period 
(respectively).  

To understand future drought risks, the indicator of maximum consecutive dry days reveals important 
information. Until 2050 especially the eastern part of the South Aegean region is expected to 
experience a prolongation of droughts. This pattern is intensified and extended over the whole 
simulated area until the mid century, especially in SSP585.  
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Figure 63: maximum number of consecutive dry days as simulated by WRF for SSP126 (top ) and 
SSP585 (bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid century and the reference period 
(respectively).  

 

In contrast to extreme drought, extreme precipitation amounts within a short time period, e.g. 1 day, 
also challenge critical infrastructure. For Syros there is a slight increase in intensities until 2050 
simulated, whereas the signal for Rhodes is not significant within SSP126. For SSP585 Rhodes is to be 
expected to decrease intensities.  
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Figure 64: maximum rain rate within 1 day as simulated by WRF for SSP126 (top ) and SSP585 
(bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid century and the reference period 
(respectively).  

 

 

 

 

 

 

 

 

Table 21. Summary table for expected changes in future climate variables and extreme indicators from AIT’s 
dynamical downscaling for WRF model in SAR. Changes are for the mean and percentile 10/percentile 90 of futures 
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expected values for each considered SSP and time period with respect to the historical median reference value for 
the period 1981-2010.  

 

 



 

132 

5.2.2. The Salzburg Region 

Since Salzburg is a highly heterogeneous region with lower parts and high mountains, the results are 
on the one hand displayed as spatial plots, as well as analysed for three different height levels 
(Figure 65) to account for and better represent the changes within the different heightlevels. 

 

 

Figure 65: height areas within CCLM, WRF below 1000m, 1000 < x < 1500, >1500m; the different 
spatial resolutions (CCCLM 2 x 2km vs WRF 5 x 5km) is also clearly visible, as within CCLM the 
valley structure is well represented with CCLM (below 1000m), whereas not seen within WRF  

Thermal indicators 
 

The change in yearly mean temperature for the Salzburg region as computed by CCLM for the mid to 
late century displays no significant change for SSP126, but around 3°C for the mid and up to 5°C for 
the late century in the SSP585 scenario. 
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Figure 66: yearly mean temperatures as simulated by CCLM for SSP126 (top ) and SSP585 
(bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid- or late century and the reference 
period (respectively).  

WRF displays similar results for SSP126, but a different structure in temperature increase in SSP585, 
as for the mid century the south of Salzburg region is experiencing an increase of about 3°C, whereas 
most northern areas are within the range of 1-2°.  
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Figure 67: yearly mean temperatures as simulated by WRF for SSP126 (top ) and SSP585 
(bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid- or late century and the reference 
period (respectively).  

Regarding the change in maximum temperatures the signal is a similar to the yearly mean 
temperature, with no significant change in SSP125, but a clear signal by the mid century in SSP585 of 
similar magnitude in CCLM and WRF, with WRF displaying a more structured change (up to 3°), 
whereas CCLM simulates this structure towards the end of the century (up to 7°C increase, Figure 67). 
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Figure 68: yearly maximum temperatures as simulated by CCLM for SSP126 (top) and SSP585 
(bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid- or late century and the reference 
period (respectively).  
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Figure 69: yearly maximum temperatures as simulated by WRF for SSP126 (top) and SSP585 
(bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid- or late century and the reference 
period (respectively).  

For the mountainous region Salzburg the yearly mean minimum temperatures doesn’t depict a 
significant change in SSP126, whereas within SSP585 both models display a clear increase in 
minimum temperature, even though the magnitude of change is comparable, the structure differs with 
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CCLM displaying a change in the lower regions first whereas WRF shows higher response in the 
topographic areas (Figure 70) 

 

 

Figure 70: minimum temperature as simulated by CCLM for SSP126 (top) SSP585 (bottom): clim 
corresponds to past period, middle column displays absolute values of simulations, right column 
the difference between the mid- or late century and the reference period (respectively).  
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Figure 71: minimum temperature as simulated by WRF for SSP126 (top) SSP585 (bottom): clim 
corresponds to past period, middle column displays absolute values of simulations, right column 
the difference between the mid- or late century and the reference period (respectively).  

For the mountainous regions not only change in maximum temperature, or related heat indices such as 
number of heatdays have important consequences, but also indicators representing cold conditions, 
such as frost or ice days, since these impact the prevailing permafrost, which in turn stabilises slopes. 
As an example the change in frost days (minimum temperature <0°C) is shown. All models and 
simulations display a decreasing number. However, as can also be seen from the boxplots (Figure 71) 
SSP126 relates to a stronger decrease by 2050 than SSP585 within WRF. In CCLM the change is 
comparable and of much lesser spread within the 30 years considered. These discrepancies could be 
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due to the different GCMs used for the initialization and of course the different model physics. The fact 
that SSP126 results in “warmer” conditions, thus less frost days, than SSP585 by 2050 can be explained 
with the different aerosol distributions considered within the SSPs (Rao et al., 2017), but needs further 
investigation.  

 

 

Figure 72: number of frost days (tmin < 0°C) as simulated by CCLM for SSP126 (top) SSP585 
(bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid- or late century and the reference 
period (respectively).  
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Figure 73: number of frost days (tmin < 0°C) as simulated by WRF for SSP126 (top) SSP585 
(bottom): clim corresponds to past period, middle column displays absolute values of simulations, 
right column the difference between the mid- or late century and the reference period 
(respectively).  
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Figure 74: boxplots of number of frost days (tmin < 0°C) for CCLM (left) and WRF (rigth) for the 
winter (DJF) season 

Precipitation indicators 
Regarding the annual mean rain rate the signal from the dynamical simulations display different 
signals, with CCLM showing an increase of more than 12% until 2050, a smaller increase until 2070 and 
a decrease until the end of the century, especially in SSP585. WRF on the contrary displays areas of 
slight increase and decrease, in both scenarios. The different signals and amplitudes of change 
highlight the uncertainties related to model simulations and the involved complexity related to 
precipitation.  
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Figure 75: mean annual rain rate as simulated by CCLM for SSP126 (top) SSP585 (bottom): clim 
corresponds to past period, middle column displays absolute values of simulations, right column 
the difference between the mid- or late century and the reference period (respectively).  
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Figure 76: mean annual rain rate as simulated by WRF for SSP126 (top) SSP585 (bottom): clim 
corresponds to past period, middle column displays absolute values of simulations, right column 
the difference between the mid- or late century and the reference period (respectively).  

 

Regarding extreme precipitation events that have caused extensive damage in the past, the change in 
maximum intensities (rx1day) over 1 day has been analysed (Figure 76). Both models and scenarios 
display an increase of up to 30% in the eastern part of the region. The signal is not as clear for the 
other regions.  
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Apart from the mean climatological change, the boxplots of rx1day (Figure 79) clearly display the 
intensities of extreme events reach unprecedented values of precipitation falling within 1 day during 
the summer season. 

 

 

Figure 77 maximum amount of precipitation over 1 day as simulated by CCLM for SSP126 (top) 
SSP585 (bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid- or late century and the reference 

period (respectively).  
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Figure 78: maximum amount of precipitation over 1 day as simulated by WRF for SSP126 (top) 
SSP585 (bottom): clim corresponds to past period, middle column displays absolute values of 
simulations, right column the difference between the mid- or late century and the reference 

period (respectively).  
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Figure 79: boxplots of max precipitation intensities over 1 day for CCLM (left) and WRF (rigth) for 
the summer (JJA) season 

Wind indicators 
As storm events also pose a threat to the infrastructure within Salzburg, change in maximum wind 
speed has been looked at. For most areas the change is not significant for SSP126, as well as SSP585, 
yet, for the northern part of the region there is a clear indication that maximum wind speed is 
increasing within the mountainous regions.  
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Figure 80: maximum wind speed as simulated by WRF for SSP126 (top) SSP585 (bottom): clim 
corresponds to past period, middle column displays absolute values of simulations, right column 
the difference between the mid- or late century and the reference period (respectively).  
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Figure 81: maximum wind speed as simulated by CCLM for SSP126 (top) SSP585 (bottom): clim 
corresponds to past period, middle column displays absolute values of simulations, right column 
the difference between the mid- or late century and the reference period (respectively).  
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Table 22. Summary table for expected changes in future climate variables and extreme indicators from AIT’s 
dynamical downscaling of WRF model in SLZ. Changes are for the mean and percentile 10/percentile 90 of futures 
expected values for each considered SSP and time period with respect to the historical median reference value for 
the period 1981-2010. 
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Table 23. Summary table for expected changes in future climate variables and extreme indicators from AIT’s 
dynamical downscaling of CLM model in SLZ. Changes are for the mean and percentile 10/percentile 90 of futures 
expected values for each considered SSP and time period with respect to the historical median reference value for 
the period 1981-2010. 
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5.3. Comparison of future climate states: statistical & downscaling 

Within ICARIA two methodologies are applied: statistical and dynamical downscaling. By using the 
same CMIP6 models (EC-EARTH-Veg3, MPI-ESM) within both methodologies and applying these to two 
very different regions, general outcomes and differences can be discussed. Within the prevailing 
deliverable first insights with respect to Salzburg are provided, an in-depth study, also taking into 
account the South Aegean region will be presented within a scientific publication.  

As the main hazards identified relate to temperature and precipitation, within this first comparison we 
focus on these two parameters.  

One indicator of interest to the different regions are heat days. Within the statistical downscaling, a 
general increase in the number of heat days is seen from the mid century on. Depending on the emission 
scenario the increase stabilizes (SSP126) or increases to up to 50 days until the end of the century. 
When comparing these results with the RCMs, it is quite striking as CCLM only displays up to 10 heat 
days until the end of the century within SSP585, WRF exhibits slightly more, but much less pronounced 
than the statistical downscaling. This discrepancy is due to the fact that the boxplots of the RCMs are 
a spatial mean of various heights, whereas the statistical downscaling results represent 44 stations 
with a mean height of about 800m. Therefore, the same plot was produced for RCM results below 1000m 
(Figure 82).  

 

Figure 82: evolution of heat days until 2100 within the different emission scenarios; left: FICLIMA 
results, right: CCLM top, WRF bottom 
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When only looking at areas below 1000m, the number of heat days increases within both RCMs, yet, not 
reaching the same magnitude as within the statistical downscaling. Further, WRF displays more heat 
days for the historical period and the mid century, but represents less heat days at the end of the 
century.  

 

Figure 83: evolution of heat days until 2100 within the different emission scenarios; left: FICLIMA 
results, right: CCLM top, WRF bottom 

The annual cumulative precipitation rate is displayed differently than the heat days, because within 
this parameter different interesting aspects arise. First, the statistical downscaling results in a slight 
increase until the end of the century, with the biggest signal within SSP585. Also the RCMs display a 
similar magnitude within the climate change signal of about 10%, yet, the direction of change (increase 
/ decrease) is reversed within CCLM and WRF. CCLM displays an increase in both SSP scenarios until 
the mid century and a decrease afterwards. For SSP126 this signal is also seen within the statistical 
downscaling, for SSP585 however the decrease is not represented. Within WRF the signal is reversed, 
showing a decrease until the near future (2050), a mixed signal over Salzburg until mid century and an 
increase thereafter. The reason behind this difference needs to be further analysed.  
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Figure 84: evolution of cumulative precipitation until 2100 within the different emission scenarios; 
left: FICLIMA results, right: CCLM top, WRF bottom 
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Conclusions 

Extensive work related to downscaling of CMIP6 state of the art global climate projections was carried 
out within ICARIA. Building upon the two common methods (statistical and dynamical) the weaknesses 
and strengths became apparent within the production and will be further investigated with respect to 
their output.  

Within the dynamical downscaling the extensive computational resources and hardware failures have 
led to delayed output, which is much less the case for statistical downscaling. Yet, the produced data 
sets for Salzburg and South Aegean region present the opportunity to assess climate change impacts 
on hourly time- and up to convection permitting spatial scale.  

Furthermore, using physics aware ML techniques, an output dataset consisting of the GCM, RCM and - 
if feasible - spatially interpolated statistical downscaled fields, will be established to reduce model 
related uncertainties. The chosen approach is depicted within this deliverable.     

Within the statistical downscaling, daily series of climate change projections have been produced 
covering a wide spectrum of climate variables and extreme indicators, covering the AMB case study 
and also for SAR and SLZ like the dynamical one. Taking into account the quickness of production of 
this method, a total of 10 GCMs and the 4 Tier 1 SSPs were used to develop the projections. 

The regions of interest (AMB, SAR, SLZ) experience different magnitudes of climate change impacts 
due to their geographical location and typology (urban, islands, mountain region). The overall trends 
with respect to temperature, precipitation and wind evolution are similar within the statistical and 
dynamical downscaling and a first comparison is provided. Yet, only first insights were given as an in 
depth analysis will be presented within a scientific publication.   

In general terms, both methodologies depict a climate future that aligns with the already existing 
climate trends within the present climate warming and the expected future one. All the temperature-
related variables show, in different degrees depending on the case study and the indicator, a coherent 
and consistent increase in their values, larger the further we move into the future and also, normally, 
the worse the emission scenario we consider. This change is remarkable for both maximum 
temperatures (like for heat days) and minimum temperature (like for tropical nights). Regarding 
precipitation, slight to non-significant decreases are expected in the Mediterranean case studies, 
although an increase in the evapotranspiration and the number of dry days is foreseen. The contrary is 
expected in Salzburg, with slight to moderate significant increases in the future. Changes in wind and 
other variables tend to be more unpredictable, with large uncertainties associated, and require a 
specific case-by-case check or a more in-depth analysis. 
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ANNEXES 

1. Data Management Statement 
 Table A1.1. Data used in preparation of ICARIA Deliverable 1.2 

Dataset name Format Size Owner and re-use conditions Potential Utility within and 
outside ICARIA 

Unique ID 

AEMet weather 

observations 
TXT 54 MB 

AEMet - lent to FIC for research 

purposes  

Used for their correction and 

as input in FICLIMA method 
- 

SMC weather 

observations 
CSV 10 GB 

SMC - lent for ICARIA for 

research purposes 
(same) - 

BCASA weather 

observations 
TXT 2.5 MB 

BCASA - lent for RESCCUE for 

research purposes 
(same) - 

PdE ocean observations CSV 578 MB PdE - Open Access (same) https://portus.puertos.es 

DWD weather 

observations 
TXT 5 MB DWD - Open Access (same) https://opendata.dwd.de 

ZAMG weather 

observations 
CSV 2 GB ZAMG - Open Access (same) 

https://data.hub.geosph

ere.at/ 

NOAA CDO weather 

observations 
CSV 10 MB NOAA - Open Access (same) 

https://www.ncdc.noaa.

gov/cdo-web/ 
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NOA-Meteogr weather 

observations 
TXT 17 MB NOA - Open Access (same) 

https://meteosearch.met

eo.gr/ 

ERA5-Land reanalysis NetCDF 3.1 TB C3S - Open Access 
Used for verification and 

statistical downscaling 
DOI 

10.24381/cds.e2161bac 

ERA5 reanalysis NetCDF 2.4 TB C3S - Open Access 
Used for statistical 

downscaling 
DOI: 

10.24381/cds.bd0915c6 

ACCESS-CM2 NetCDF 1.4 TB ESGF - Open Access (same) 
https://aims2.llnl.gov/se

arch 

BCC-CSM2-MR NetCDF 3.5 TB ESGF - Open Access (same) (same) 

CanESM5 NetCDF 0.55 TB ESGF - Open Access (same) (same) 

CMCC-ESM2 NetCDF 2.8 TB ESGF - Open Access (same) (same) 

CNRM-ESM2-1 NetCDF 2.2 TB ESGF - Open Access (same) (same) 

EC-EARTH3 NetCDF 7.8 TB ESGF - Open Access (same) (same) 

EC-EARTH3-Veg NetCDF - ESGF - Open Access 
Used for dynamical 

downscaling 
(same) 

MPI-ESM1-2-HR NetCDF 3.2 TB ESGF - Open Access Used for both downscalings (same) 

https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.24381/cds.bd0915c6
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MRI-ESM2-0 NetCDF 2.6 TB ESGF - Open Access 
Used for statistical 

downscaling 
(same) 

NorESM2-MM NetCDF 2.9 TB ESGF - Open Access (same) (same) 

UKESM1-0-LL NetCDF 1.2 TB ESGF - Open Access (same) (same) 

CHELSA NetCDF - ISIMIP - Open Access verification 
https://doi.org/10.48364/I

SIMIP.836809.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.48364/ISIMIP.836809.2
https://doi.org/10.48364/ISIMIP.836809.2
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Table A1.2. Data produced in preparation of ICARIA Deliverable 1.2 

Dataset name Format Size Owner and re-use conditions Potential Utility within and 
outside ICARIA 

Unique ID 

AMB corrected 

observations 

ZIP 

(TXT) 
14.2 MB FIC - Open Access 

Consultation and input for 

other modelling 

DOI: 

10.5281/zenodo.10964

398 

SAR corrected weather 

observations 

ZIP 

(TXT) 
0.5 MB FIC - Open Access 

Consultation and input for 

other modelling 
(same) 

SLZ corrected weather 

observations 

ZIP 

(TXT) 
4.1 MB FIC - Open Access 

Consultation and input for 

other modelling 
(same) 

FICLIMA climate 

change projections at 

local scale 

ZIP 

(TXT) 
2.9 GB FIC - Open Access 

Outcome. Input for other 

modelling and further 

replicability. 

(same) 

FICLIMA climate 

change spatial 

projections  

TIF TBD FIC -Open Access 
Outcome for stakeholders. 

Input to ICARIA’s DSS. 

DOI: 

10.5281/zenodo.12930

101 

[AIT]spatially 

downscaled climate 

projections (2 RCMs) 

NETC

DF 
? Terabyte AIT- open access 

Outcome for stakeholders. 

Input to ICARIA’s DSS. 

ICARIA DSS [future 

Zenodo] 
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2. Quality control of weather observations 
 

2.1. Quality control 

Before starting ICARIA’s tasks of developing future climate change scenarios in the three CS (AMB, SAR 
and SLZ), it was mandatory to first gather multiple weather observations at the study regions and 
perform a check of their quality. This is, a previous study has been carried out of the provided observed 
data in CS areas to ensure that the quality of those data is good enough for subsequent studies and 
conclusions – that’s what a Data Quality Control process involves. 
 
Conducting quality control on a time series of records involves the implementation of a battery of tests 
aimed at ensuring data consistency within the analyzed series. This annex section focuses on the 
critical climatic variables, specifically precipitation and temperature, with similar findings 
extending to other variables (RH, wind). 
 
It is essential to note that the testing procedures must be designed to accommodate varying outcomes 
across different datasets. Each dataset represents the local climate of the observed area, necessitating 
a consistent theoretical approach to testing across all observatories, while acknowledging that the 
acceptable range is context-dependent. For instance, when examining the average temperature within 
a dataset, a daily maximum temperature of 40°C would be deemed acceptable in a series with an 
average temperature of 35°C but noteworthy in a series with a maximum average of 20°C. Identifying a 
noteworthy value does not imply automatic rejection; rather, it underscores the need for a thorough 
investigation into its origin to verify accuracy. 
 
The primary automated controls employed for quality assurance include: 
 

1. Basic Consistency Checks: Direct elimination of evident incorrect values, such as negative 
precipitation values. 

2. Identification of Atypical Values or 'Outliers': Recognition of values within the dataset that 
significantly deviate, either originating from different data sources or generated differently from the 
rest of the dataset. The challenge in recognizing such values lies in defining "atypical," with practical 
identification often linked to values exhibiting an unusually high absolute magnitude. 

 
Temperature 

Basic consistency 

Concerning temperature, we've conducted basic consistency checks by examining daily values where 
the recorded maximum temperature is lower than the minimum temperature. An illustrative real-life 
example of such cases is presented in Table A2.1, which is derived from observed data. 
 
There are two common scenarios leading to these instances: 
 

1. Misrecorded Missing Values: In some instances, missing temperature values are not 
appropriately marked as missing. Depending on the source, these values might be recorded as "NA" 
(Not Available) or "-9999," but they end up being recorded as 0. In such cases, we promptly dismiss 
maximum temperature values if we can verify that 0°C is not a plausible value after scrutinizing the 
dataset. 
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2. Internal Inconsistency: Another situation arises when a temperature value, while internally 
consistent, becomes inconsistent when compared with the concurrent daily temperature value. The 
table's last two lines provide an example of this scenario: either of the two values could be incorrect. 
Consequently, we opt to reject both values. 
 

Table A2.1.Examples of real daily temperature data observed where maximum temperature is lower 
than minimum temperature. These values are given as an example of possible detected situations and 

they come from several different meteorological stations. 

Year Month Day 
Maximum 

temperature (°C) 
 Minimum 

temperature (°C) 

1977 11 13 0 15 

1978 1 11 0 13 

2000 10 25 20.7 22.7 

2009 12 2 22.5 23.5 

 

 

Outliers 

As mentioned earlier, identifying an atypical value hinges on the theoretical definition of "atypical." 
Taking as an example one of the stations considered for ICARIA, depicted in the figure below (Figure 
A2.1): a series of maximum temperature values exceeding 70°C appears blatantly unusual, not only for 
this specific observatory but on a global scale. However, it prompts us to ponder: Why is a value of 94°C 
considered self-evident as an outlier for us? Would it still be self-evident if the value were 50°C? What 
about 40°C? 

From a theoretical standpoint, determining whether a value is atypical involves assessing how much it 
deviates from the typical values in our dataset. The formal procedure for this test involves gauging the 
distance of a value from the mean of the observed series, with the unit of measurement for this distance 
being the standard deviation of the series. 

Consequently, our tests need to ascertain the following: 

1. The mean and standard deviation of each meteorological station. 

2. A threshold value, expressed in units of standard deviation (added to the mean), beyond which 
a daily value can be classified as atypical. 

3. A comprehensive analysis of values identified as outliers in the previous step to verify their 
accuracy. This analysis aids in determining whether these values should be rejected or if a new 
threshold value needs to be assigned, prompting a repeated analysis. 

 

After this first introduction to the general methodology applied in these types of temperature quality 
tests, hereafter are facilitated some examples of real stations considered within ICARIA that failed to 
pass these controls and were either corrected (if possible) or removed.  
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Figure A2.1. Observed series of maximum temperatures for a real weather station, in this case 
corresponding to SAR CS station “Koronos-Naxou”. Values of more than 70ºC are registered.

 
Figure A2.2. Observed series of maximum temperature for a weather station corresponding to SAR CS 

station “Naxos-Kentro WMO”. Abnormal maximum values of 0ºC are registered. 
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Figure A2.3. Observed series of maximum temperatures for a weather station corresponding to SLZ 

CS station “Virgen” and ID “11252”. Abnormal minimum values of -50ºC are registered. 
 
 

Precipitation 

Basic consistency 

In the case of precipitation, basic consistency tests are associated with the search of negative daily 
records - some real examples of these cases (based on real data from real weather stations) are shown 
in the table below (Table A2.2). 
 

Table A2.2. Samples of real data where daily observed precipitation is negative (shown for illustrative 
purposes – not stations provided for this study). 

Year Month Day Precipitation 

1986 8 31 -1.0 mm 

2003 9 21 -8.0 mm 

 

Due to the self-evident error of these values, every detected case is directly marked as wrong and 
immediately rejected. 

Outliers 

Regarding precipitation, like before with temperature, an odd value is identified when it surpasses a 
specified multiple of the series mean. However, due to the intrinsic characteristics of this 

https://docs.google.com/document/d/1InB6ovJ8oZbOG3_6zGUp0VbTxmMbUzQc/edit#bookmark=id.pv6qcq
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meteorological variable, detecting an outlier does not automatically result in its direct rejection This is 
because really heavy rain can be rare but not impossible. Therefore, a meticulous analysis of the 
climatology specific to the area is imperative. 
 
For example, places hit by hurricanes might have daily rainfall records that seem odd, but they could 
be totally fine given the hurricane conditions. So, checking strange rainfall values needs a close and 
careful look, considering that extreme weather events might be normal for some places. 
 

Like in the previous section, now with precipitation methodology described, hereafter are facilitated 
some examples of stations considered within ICARIA that failed to pass these controls and were either 
corrected (if possible) or removed.  

 
Figure A2.4. Observed series of 24-h precipitation accumulations for a weather station corresponding 
to SLZ CS station “Windischgarsten” and ID “11355”. Abnormal rainfall gauged values of >400mm are 

registered, considered as outliers for this area’s climate. 
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Figure A2.5. Observed series of 24-h precipitation accumulations for a weather station corresponding 

to SAR CS station “Naxos-Port”.  A gap of missing values was identified. 
 
 

2.2. Homogenization 

The homogenization of a time series is related to the quality control of data aligned with the chronological 
order of the series. Essentially, homogenization checks the consistency of data presentation. Although 
preceding tests may be employed for series analysis, they do not provide insights into the temporal 
variability of the data, particularly concerning the annual cycle. 

 
It's worth noting that homogenization is part of the bigger process of quality control for a series. I'm 
mentioning it separately just to stress how crucial it is and what it reveals. 
 
Refer to Figure A2.6  below, illustrating the maximum temperature from an actual weather station. 
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Figure A2.6. Another observed series of maximum temperatures for a real weather station (showed 

for illustrative purposes – not a station provided for this study). 
 

The observed maximum temperature behavior of this station exhibits erratic tendencies during the period 
from 1961 to 1964. While these values display erraticism concerning the preceding and subsequent 
temperature patterns, they are not inherently irrational. This practical example aids in comprehending the 
objective of homogenization tests: identifying temporal segments within a series where data deviates from 
the overall pattern. In fact, the series presented here as an illustration was identified through these tests. 
The formal execution of homogenization tests poses challenges rooted in defining the similarity between 
a segment of the series and the rest of the dataset. 

 
The homogeneity test methodology employed here is based on the approach developed by Monjo et al. 
(2013): 

1. To measure the similarity between data from one year and another, a distribution comparison 
test utilizing the Kolmogorov-Smirnov (KS) test is applied. This non-parametric statistical test, 
not assuming distributions of the studied variable, yields a p-value serving as a metric for the 
similarity between two years. Figure A2.7 illustrates the "Control Analysis" graph, showcasing 
the logarithmic p-value comparison between each year and the subsequent year for the given 
example (maximum temperature of the studied station). Values close to 0 signify highly similar 
value distributions between two consecutive years, indicating no discernible inhomogeneity. A 
lower Log(KS) value implies a higher probability of inhomogeneity between two consecutive 
years. This initial phase assesses similarities solely between adjacent years, establishing a 
preliminary condition for potential inhomogeneity. 

2. If a specific year is flagged as a potential indicator of inhomogeneity, it undergoes another test 
("Similarity between years," Figure A2.7). The p-value of each year relative to the selected years 
is computed (represented by the red and blue lines in the graph). The presence of a distinct 
jump or break in these p-values indicates a true inhomogeneity across the entire series. 
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Figure A2.7. Logarithm of KS test p-value used in the homogenisation process for daily data. The 

case selected belongs to the maximum temperature of a real meteorological station whose daily data 
are represented in Figure A2.6. 

 
 
This procedure enables the identification of years exhibiting inhomogeneity in a series. Since determining 
the threshold for a sufficiently small p-value to indicate potential inhomogeneity is contingent on our 
criteria, the same test is iterated with varying threshold p-values, ranging from strongly negative to close 
to zero. This iterative approach aims to enhance the objectivity of the criterion. If a genuine inhomogeneity 
exists, it should manifest when the majority of tests are conducted. 
 
It is crucial to emphasize that there is no automated process dictating the appropriate action to be taken 
regarding a series (whether removal or adjustment). Given that these actions become necessary when 
dealing with a substantial number of observatories, a visual inspection is invariably required after 
conducting the tests to validate the correctness of the final series. 
 
Now with the methodology for homogenization explained, we attach below some examples that serve as 
proof of some ICARIA’s observations that failed to pass these controls and were either corrected (if 
possible) or removed. Furthermore, a detailed set of tables (Table A2.3 to Table A2.7) are also provided as 
summary of the total number of stations treated (with positive or negative outcomes) by CS and the 
variable of interest. 
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Figure A2.8. Observed series of maximum temperatures for SLZ CS weather station 

“Windischgarsten”, ID “11355”. Two sudden different changes (jumps) in the mean trend of the station 
 are observed. 

 
Figure A2.9. Observed series of 24-h precipitation accumulations for SLZ CS weather station 

“Kremsmuenster”, ID “11012”.  An abnormal data cluster of ~100mm is observed. 
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Figure A2.10. Observed series of 24-hour precipitation accumulations for AMB CS weather station 

“Sant Llorenç Savall”.  A period of odd zero values was identified. 

 

 

Table A2.3. Summary of temperature weather observations before and after the quality control. 

Case study 
Retrieved 

observations 
Dismissed 

observations 
Final accepted 
observations 

AMB 168 15 153 

SAR 19 2 17 

SLZ 61 4 57 

 

Table A2.4. Summary of precipitation weather observations before and after the quality control. 

Case study 
Retrieved 

observations 
Dismissed 

observations 
Final accepted 
observations 

AMB 225 13 212 

SAR 19 5 14 

SLZ 61 3 58 
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Table A2.5. Summary of wind weather observations before and after the quality control 

Case study 
Retrieved 

observations 
Dismissed 

observations 
Final accepted 
observations 

AMB 66 9 57 

SAR 17 0 17 

SLZ 55 4 51 

 

Table A2.6. Summary of RH weather observations before and after the quality control. 

Case study 
Retrieved 

observations 
Dismissed 

observations 
Final accepted 
observations 

AMB 171 58 113 

SAR 17 1 16 

SLZ 59 15 44 

 

Table A2.7. Summary of oceanic (weaves + sea level) weather observations before and after the 
quality control. 

Case study 
Retrieved 

observations 
Dismissed 

observations 
Final accepted 
observations 

AMB 12 0 12 
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3. Quality control of downscaling methodologies. Uncertainty 
analysis. 

Before simulating the future climate, it is necessary to verify that the tools used for this purpose work 
properly in the study area by correctly simulating the observed past climate. For this purpose, it is 
necessary to carry out a complete and robust verification analysis of the downscaling methodologies used 
in ICARIA and how these affect the GCMs to be downscaled so as to assess properly the uncertainty 
introduced in the outcomes. For the different variables, the errors with which the methodology and each 
GCM simulate the observed climate at each location must be known. In this Annex section, a more in-depth 
description of the procedures used will be provided for each downscaling method applied. 

3.1. Statistical downscaling - FICLIMA 

In the case of the statistical downscaling applied in ICARIA, coming from the FICLIMA method, the quality 
control has the peculiarity of consisting of two steps. The FICLIMA method is a statistical procedure that 
takes as input local weather observations to analyze local climate signals and introduce them into the 
GCMs projections. Being so, and after the quality control of weather data, a first verification of the ERA5-
Land reanalysis that is used for the search of analogue days is done against weather data. Then, a 
validation of the application of the downscaling for each GCM is performed using its historical experiment 
and the reanalysis. Here below more information is provided. 

Verification of the methodology 

The verification process commences by employing the downscaling methodology on atmospheric 
reanalyses, which represent the state of the atmosphere (the predictors) on each day within a specified 
reference period (e.g., from 1981 to 2010). While the latest ERA5-Land reanalyses boast detailed resolutions 
of approximately 9 km, it would be counterproductive for a tool to yield satisfactory outcomes with such 
high-resolution predictors if it is subsequently applied to Global Climate Model (GCM) outputs 
characterized by lower resolution (around 100 km). Therefore, it becomes necessary to adjust the spatial 
and temporal resolution of the reanalyses to align with that of the GCMs to ensure compatibility and 
accuracy in the downscaling process. 

Thorough verification is essential, extending beyond mean values to include extremes and covering all 
time scales, including daily intervals. The emphasis on daily verification is particularly significant. If the 
tool correctly simulates changes from one day to the next, it indicates an effective capture of the 
underlying physical connections between predictors and predictands. These physical links remain 
relatively consistent, even in the face of climate change (as opposed to purely empirical relationships that 
might shift). In essence, this approach theoretically addresses the primary challenge in statistical 
downscaling known as the non-stationarity problem. This problem questions the stability of 
predictor/predictand relationships established in the past, probing whether these relationships will persist 
in the future. 

As previously mentioned, we assess the method's performance by comparing observed and ERA5-Land 
reanalysis simulated time series for a historical reference period (1981-2010). The mean absolute error 
(MAE) and mean relative error (MRE) serve as key metrics for most climate variables, offering a primary 
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measure of the method's efficacy in replicating day-to-day weather variability. This analysis is crucial as 
it gauges the method's ability to accurately capture the physical forcings influencing each climate 
variable, enabling the detection of potential changes in their intensity or frequency. 

Subsequently, the Kolmogorov-Smirnov (KS) test is employed to evaluate the statistical significance of 
the simulated probability distributions compared to the observed ones (Marsaglia et al., 2003). This test 
proves valuable in assessing the method's capability to replicate not only the mean distribution but also 
extreme values. Additionally, the KS test is applied to ascertain the effectiveness of bias correction, 
ensuring a comprehensive evaluation of the method's overall performance. 

Results coming from the verification processes all across ICARIA’s three case studies are completely 
satisfactory, and pretty similar from one case to another. As a matter of fact, considering the previous 
statement and for the sake of clarity and space, hereafter are displayed only the results for the verification 
at the AMB case study (which happens to be the one with more weather data as basis). Results are shown 
for temperature, precipitation and wind. 

 

Precipitation 
 

Verification results concerning the precipitation are shown here for all stations considered in AMB. Figures 
displayed showcase the results of the KS-test before and after the correction (Figure A3.1), as well as the 
distribution of mean monthly values and days with precipitation, before and after correction (Figure A3.2). 

 

 

Figure A3.1. Verification results for the application of the KS-test before (left) and after (right) 
correction. P-value threshold at 0.05. Check Y-axis for more detail on scales. 
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Figure A3.2.  Verification results at monthly scale after the correction of ERA5-Land values from weather data, 
displayed at mean values and days with precipitation before (left) and after (right) correction.  

Temperature 
 

Verification results concerning the temperature are shown here for all stations considered in AMB (same 
results for SAR and SLZ). Figures displayed showcase the results of the BIAS and MAE statistics (Figure 
A3.3), as well as KS-test before and after the correction (Figure A3.4). Also, the distribution of mean 
monthly values is shown (Figure A3.5). 

 

 Figure A3.3. Verification results of maximum temperature (red) and minimum temperatures (blue) after the 
calculation of BIAS (upper row) and MAE (bottom row) statistics before (left picture) and after (right picture) 

correction. Check Y-axis for more detail on scales. 
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 Figure A3.4. Verification results of maximum temperature (red) and minimum temperatures (blue) for 
the application of the KS-test before (left) and after (right) correction. P-value threshold at 0.05. 

Check Y-axis for more detail on scales. 

 

 

 

Figure A3.5.  Verification results of Maximum Temperature monthly values after the correction of 
ERA5-Land values from weather data, displayed at mean values before (left) and after (right) 

correction.  
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Wind gust 
 

Verification results concerning wind gusts are shown here for all stations considered in AMB, since 
outcomes for SAR and SLZ are similar. Considering the particular nature of wind gusts, tests applied differ 
slightly from those of precipitation and temperature, being checked the extremest percentile (P99 and 
P100), thresholds and their behaviour. Figure A3.6 showcases the results of the verification for specific 
thresholds, and in Figure A3.7 can be found as well as the distribution of mean monthly values for the P99 
percentile. 

 

Figure A3.6.  Verification results at specific wind gust thresholds after the correction of ERA5-Land 
values from weather data, displayed at number of days above the thresholds. 

 

 

Figure A3.7.  Verification results at monthly scale for the P99 percentile of wind gust values after the 
correction of ERA5-Land values from weather data.  
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Validation for the CMIP6 models 

Once the successful verification of the downscaling methodology is accomplished, each Global Climate 
Model (GCM) slated for regionalization undergoes validation through the downscaling of its control 
outputs, referred to as Historical (covering the period 1960-2015, for instance). This involves comparing 
the simulations derived from these outputs with the observed climate to gauge the extent to which the 
GCM accurately represents the observed climate. Notably, this validation is not only conducted at a global 
scale but also at the local scale, recognizing that certain GCMs may perform well in one area of a region 
but not in another. The outcomes of this validation, assessed for each GCM, variable, and geographical 
point, play a pivotal role in quantifying uncertainties. A GCM with more favourable validation results 
corresponds to lower uncertainties in its simulations. 

The validation process involves assessing the performance of applying the chosen method to each climate 
model. Unlike reanalyses, a historical experiment of a climate model aims to simulate climate variability at 
a daily scale rather than replicating the actual day-to-day weather evolution in the reference period. 
Consequently, errors obtained from day-to-day comparisons between time series (such as MAE, MRA, and 
RPS) are not meaningful. Instead, other statistics are commonly employed to evaluate the model's ability 
to reproduce climate averages and variability effectively. 

One key statistic for a model is the bias of the mean and the standard deviation, calculated as the average 
of the total error for each station across each climate variable. The bias is crucial because a model should 
accurately reproduce the spatial distribution of climate averages. High dispersion in bias across a set of 
observatories may imply a distortion of regional variability and, consequently, an unrealistic portrayal of 
key climatic features. 

However, evaluating a climate model goes beyond climatic averages; climate variability should also be 
assessed through additional statistics. In this regard, the non-parametric Kolmogorov-Smirnov (KS) test 
proves useful for measuring the distance between two probability distributions, considering the entire 
distribution. The KS p-value indicates whether two distributions are indistinguishable, with a preferred 
threshold typically set at p-value > 0.05. 

The results obtained from the validation processes in ICARIA's three case studies are entirely satisfactory 
in the cases of precipitation and temperature, exhibiting a consistent pattern across all cases, with no 
notable exceptions worth highlighting. There is however a remarkable situation for wind due to the 
complexity of working with it, and depending on the CS there are some models that can be seen to 
not properly represent a correct distribution for wind behaviour and shall be not considered for the 
delivery of results. In light of this, and considering clarity and brevity, only the verification results for the 
AMB case study are presented in the temperature and precipitation sections, with a more detailed 
discussion on wind for other CS. The displayed results encompass assessments for temperature, 
precipitation, and wind variables. 

 

Precipitation 
 

Validation results concerning the precipitation are shown here for all stations considered in AMB. Figures 
displayed showcase results of the SD difference (Figure A3.8), the KS-test (Figure A3.9), as well as the 
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distribution of mean monthly values for each model considered before and after correction  and application 
of FICLIMA method (Figure A3.10). 

 

Figure A3.8.  Validation results of difference between Standard Deviation (SD) statistic to Maximum 
Temperature values before (left) and after (right) the correction of the 10 CMIP6 models considered 

and the application of FICLIMA method. Check Y-axis for more details on scale. 

 

Figure A3.9.  Validation results, for precipitation, of the application of the Kolmogorov-Smirnov (KS) test values 
before (left) and after (right) the correction of the 10 CMIP6 models considered and the application of FICLIMA 

method.  P-value threshold set at 0.05. Check Y-axis for more details on scale. 
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Figure A3.10.  Validation results of precipitation monthly values before (left) and after (right) the 
correction of the 10 CMIP6 models considered and the application of FICLIMA method. Check Y-axis 

for more details on scale. 

 

Temperature 
 

Validation results concerning temperature are shown here for all stations considered in AMB (same results 
for SAR and SLZ). Figures displayed showcase results of the SD difference (Figure A3.11), the KS-test 
(Figure A3.12), as well as the distribution of mean monthly values for each model considered before and 
after correction  and application of FICLIMA method (Figure A3.13. 

 

Figure A3.11.  Validation results of difference between Standard Deviation (SD) statistic to Maximum 
Temperature values before (left) and after (right) the correction of the 10 CMIP6 models considered 

and the application of FICLIMA method. Check Y-axis for more details on scale. 
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Figure A3.12.  Validation results for Maximum Temperature of the application of the Kolmogorov-Smirnov (KS) 
test values before (left) and after (right) the correction of the 10 CMIP6 models considered and the application 

of FICLIMA method.  P-value threshold set at 0.05. Check Y-axis for more details on scale. 

 

 

 

Figure A3.13.  Validation results of Maximum Temperature monthly values before (left) and after 
(right) the correction of the 10 CMIP6 models considered and the application of FICLIMA method. 

Check Y-axis for more details on scale. 
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Wind gust 
 
Validation results concerning wind gusts are shown here. It is in this case, unlike those of precipitation and 
temperature, to be remarked that validation tests have indeed shown a case for discussion. In this case of 
wind gust, validation results show different conclusions for each of the CS, and while for SAR the outcome 
is positive in general, for AMB and SLZ there are problems in the performance of some models. This is the 
reason why here figures for AMB and SLZ are shown. As it can be seen in the figures, especially in Figure 
A3.15 at monthly scale for AMB, there are a couple of models, namely ACCESS-CM2 and MRI-ESM2-0, that 
can be seen to not properly represent a correct distribution for wind behaviour; in Figure A3.18 for the case 
of SLZ it is MPI-ESM1-2-HR the one that off-performs; these models shall be not considered for the delivery 
of results. Depending on the CS, these models have been removed from the results and are therefore not 
considered in the ensemble strategy, limiting for the wind variable the results to a total of 5-7 CMIP6 
models. A summary of the results is displayed in Table A3.1. 

Figures displayed showcase results of the MAE statistic (Figure A3.14 and A3.17), and of an evaluation of 
model behaviour around percentiles at monthly scale (Figure A3.15 and A3.18) as well as their distribution 
around other percentiles or fixed wind thresholds at annual scale (Figure A3.16 and A3.19) after correction 
and application of FICLIMA method.  

 

Table A3.1.  Validation results for all three ICARIA’s CS of wind gust variable considering the 
performance from each of the 7 models used. After evaluation of the models performance from MAE 
and monthly bias, the final assessment of those used is presented. Green means “ok”, yellow “good 

but use with care” and red “dismissed”. 

Models 
Validation results for wind gust in each case study 

AMB SAR SLZ 

ACCESS-CM2    

CanESM5    

CMCC-ESM2    

CNRM-ESM2-1    

EC-EARTH3    

MPI-ESM1-2-HR    

MRI-ESM2-0    
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Figure A3.14.  Validation results for AMB of wind gust considering the statistical MAE value before 
after the correction of the 7 CMIP6 models considered and the application of FICLIMA method.  

 

Figure A3.15.  Validation results for AMB of monthly wind gust percentile 99th values after the 
correction of all the 7 CMIP6 models considered and the application of FICLIMA method.  
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Figure A3.16.  Validation results for AMB of several wind gust percentiles and threshold values after the correction of 
all the 7 CMIP6 models considered and the application of FICLIMA method.  

 

 

 

Figure A3.17.  Validation results for SLZ of wind gust considering the statistical MAE value before after the correction 
of the 7 CMIP6 models considered and the application of FICLIMA method.  
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Figure A3.18.  Validation results for SLZ of monthly wind gust percentile 99th values after the correction of all the 7 
CMIP6 models considered and the application of FICLIMA method.  

 

 

Figure A3.19.  Validation results for SLZ of several wind gust percentiles and threshold values after the correction of 
all the 7 CMIP6 models considered and the application of FICLIMA method.  
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  Projection uncertainty 

The cascade of uncertainties in climate simulation at the local scale within ICARIA's FICLIMA method stems 
from four primary sources: (1) the employed statistical downscaling method [verification process], (2) the 
selection of models/runs and the performance of the method/models [validation processes], (3) the 
inclusion of SSP scenarios, and (4) the inherent natural variability in climate. 

The last two sources of uncertainty are addressed through the implementation of an ensemble strategy. 
Following bias correction across all models, an ensemble is created by combining these models, providing 
an estimation of the uncertainty attributed to both past and future climate variability. This ensemble is 
executed for each SSP scenario to assess the impact of potential future economic conditions. All climate 
projections are conducted for yearly averages, considering both absolute and relative changes when 
necessary. 

It's important to note that climate projections are not regarded as forecasts because they are simulated 
under various SSP scenarios, the likelihood of which is contingent upon decisions made by politicians and 
citizens. 

The ensemble of climate projections is visually represented through uncertainty areas, specifically 
considering the 10th–90th percentile values and the median value for each year horizon. These values are 
calculated based on all stations and models validated for each climate variable, as illustrated in Figure 
A3.20. 

 

Figure A3.20. Example of ensemble strategy. Figure shows climate projections of changes in 
maximum annual temperature for a random city. The ensemble median (solid lines) and the 10th–90th 

percentile values (shaded areas) are displayed. Gray area represents the Historical data up to year 
2015. Vertical black line shows in this particular example a moment of increase in uncertainty. 
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3.2. Verification of Dynamical downscaling - AIT 

To verify the quality of the used regional climate models, so-called hindcast simulations (1980 - 2014), 
where ERA5 is used to initialize the RCMs, were performed. This approach allows the comparison of the 
RCM output with observation based re-analysis data. Within ICARIA the 1km² data set CHELSA (Karger et 
al., 2021) is used.  

The description of the dataset is taken from ISIMIP12:  

The CHELSA-W5E5 dataset was created to serve as observational climate input data for the impact 
assessments carried out in phase 3a of the Inter-Sectoral Impact Model Intercomparison Project 
(ISIMIP3a).  

Version 1.0 of the CHELSA-W5E5 dataset covers the entire globe at 30 arcsec horizontal and daily 
temporal resolution from 1979 to 2016. Data sources of CHELSA-W5E5 are version 1.0 of WFDE5 over land 
merged with ERA5 over the ocean (W5E5; Lange, 2019; Cucchi et al., 2020), the ERA5 global reanalysis 
(Hersbach et al. 2020) and the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010; 
Danielson and Gersch, 2011).  

Variables (with short names and units in brackets) included in the CHELSA-W5E5 dataset are Daily Mean 
Precipitation (pr, kg m-2 s-1), Daily Mean Surface Downwelling Shortwave Radiation (rsds, W m-2), Daily 
Mean Near-Surface Air Temperature (tas, K), Daily Maximum Near Surface Air Temperature (tasmax, K), 
Daily Minimum Near Surface Air Temperature (tasmin, K), Surface Altitude (orog, m), and the CHELSA-
W5E5 land-sea mask (mask, 1). Version 1.0.1 of this dataset resolved the caveat described at 
https://data.isimip.org/caveats/6/. Version 1.0.2 added data with coarser resolution (90 arcsec = 1.5 
arcmin, 360 arcsec = 6 arcmin, 1800 arcsec = 30 arcmin = 0.5°), which were generated from version 1.0.1 
of the 30 arcsec data via spatial aggregation. 

Methods: 

CHELSA-W5E5 v1.0 is a downscaled version of the W5E5 v1.0 dataset, where the downscaling is done with 
the CHELSA v2.0 algorithm (Karger et al. 2017, Karger et al. 2021). In the following we outline how this 
algorithm works. The CHELSA algorithm applies topographic adjustments based on the surface altitude, 
orog, from GMTED2010. Since it does not add any value over the ocean, all values over the ocean are masked. 
The CHELSA algorithm is applied day by day. CHELSA-W5E5 tas is obtained by applying a lapse rate 
adjustment to W5E5 tas, using differences between CHELSA-W5E5 orog and W5E5 orog in combination with 
temperature lapse rates from ERA5. Those lapse rates are calculated based on atmospheric temperature, 
ta, at 950 hPa and 850 hPa, and the geopotential height, zg, of those pressure levels. The lapse rate used 
for the adjustment is calculated as the daily mean of hourly values of (ta_850-ta_950)/(zg_850-zg_950). 
The variables tasmax and tasmin are downscaled in the same way, using the same lapse rate value. 

Precipitation downscaling uses daily mean zonal and meridional wind components from ERA5 to calculate 
the orographic wind effect and combines that with the height of the planetary boundary layer to approximate 
the total orographic effect on precipitation intensity. Using that, precipitation from W5E5 is downscaled 

                                                        
12 https://data.isimip.org/10.48364/ISIMIP.836809.2 

https://data.isimip.org/caveats/6/
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such that precipitation fluxes are preserved at the original 0.5° resolution of W5E5. More details are given in 
Karger et al. (2021). 

Surface downwelling shortwave radiation, rsds, at 30 arcsec resolution is strongly influenced by topographic 
features such as aspect or terrain shadows, that are less pronounced at 0.5° resolution. The downscaling 
algorithm combines such geometric effects with orographic effects on cloud cover for an orographic 
adjustment of rsds. Geometric effects are considered by computing 30 arcsec clear-sky radiation estimates 
using the method described in Böhner and Antonic (2009) and a simplified, uniform atmospheric 
transmittance of 80 %. These effects include shadowing from surrounding terrain, diffuse radiation based 
on reflectance from surrounding terrain, and terrain aspect. To include how orographic effects on cloud cover 
influence rsds, the clear-sky radiation estimates are adjusted using downscaled ERA5 total cloud cover. The 
cloud cover downscaling uses ERA5 cloud cover at all pressure levels and the orographic wind field. For 
details see Karger et al. (2022, in preparation). Finally, the clear-sky radiation estimates adjusted for cloud 
cover are rescaled such that they match W5E5 rsds, B-spline interpolated to 30 arcsec. 
 
For brevity reasons, only the verification results for Salzburg for selected indicators are displayed. 
Within a planned publication, the results for both Salzburg and the South Aegean region will be presented.  
 
The mean monthly temperatures for CHELSA and CLM, as well as for heights below and above 1500m are 
displayed below. CLM captures well the overall structure of warmer or colder months, but displays overall 
slightly lower temperatures than CHELSA, with the differences being more pronounced during the winter 
months. A similar distribution is seen within WRF (Figure A3.22). Overall, is the performance of the models 
with respect to the mean monthly temperature satisfactory.  
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Figure A3.21: spatial average: monthly mean temperature of CHELSA (black) and CLM (blue) above (orange) 
and below (green)  
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Figure A3.22: spatial average: monthly mean temperature of CHELSA (black) and WRF (blue) above 
(orange) and below (green) 
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Apart from the mean monthly temperatures, the models’ ability to represent heat or drought are 
crucial.  

To better analyse spatial (in)consistencies between models and verification database, the monthly 
mean temperatures are displayed. WRF better represents the spatial distribution of mean monthly 
temperature in January than CCLM as displayed in Figure A3.23. This is also depicted within the bias 
and RMSE, where the underestimated temperatures within the valleys in CCLM are apparent.   

 

Figure A3.23: mean January temperature (1981 - 2010) top row: CCLM, CHELSA, WRF; bottom row: BIAS 
CCLM-CHELSA left, WRF - CHELSA right 

 

The analysis of the July mean temperatures display similar characteristics within CCLM and WRF, 
both models underestimating the summer temperatures within the higher altitudes and mainly 
underestimating it within the other areas. WRF displays higher error values than CCLM.  

 

 

Figure A3.24: mean July temperature (1981 - 2010) top row: CCLM, CHELSA, WRF; bottom row: BIAS 
CCLM-CHELSA left, WRF - CHELSA right 
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When looking at the July precipitation rate, the cold bias within the south of Salzburg relates to a 
strong overestimation of rain rates. Yet, it is important to consider that observations within steep 
topography are prone to errors, thus CHELSA might underestimate the actual rain rates.  

 

 

Figure A3.25: mean July precipitation rate (1981 - 2010) top row: CCLM, CHELSA, WRF; bottom row: 
BIAS CCLM-CHELSA left, WRF - CHELSA right 

The monthly skill to simulate the rain rate of CCLM and WRF in comparison to CHELSA and 
distinguished between height is shown below. Both models capture the pattern of the precipitation 
(years with a lot or less precipitation), yet, the absolute values are overestimated, especially within 
WRF.  
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Figure A3.26: spatial average: monthly mean precipitation rate of CHELSA (black) and CCLM (blue) 
above (orange) and below (green) 
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Figure A3.27: spatial average: monthly mean precipitation rate of CHELSA (black) and WRF (blue) 
above (orange) and below (green) 
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4. Definition of climate change extreme indicators 

In this annex, all the indicators that have been calculated and analysed to characterise future climate 
and also extreme events changes, and that were first mentioned in section 4 and listed in Table 10 ant 
Table 11, are described hereafter. 

Thermal indicators 
 

1) Warm/cold days 

The definition of warm/cold days is taken after a quantile analysis of the local climate data, defining it as 
a day whose maximum/minimum value goes beyond the 90%/10% quantile of its historical values for that 
precise climate day. This indicator has the potential to be applied anywhere since its core definition relies 
on the local climate by using an empirical threshold instead of a fixed temperature value; this is, the 
threshold would vary depending on the place considered. 

2) Heat day 

A heat day (and the number of them of the indicator) is defined as a day whose maximum temperature 
reaches or exceeds the 30ºC threshold. This indicator is based on a fixed value, being therefore an 
indicator that relies on the known impact of this temperature threshold and does not depend on local 
climate. It is scalability is not appropriate but has a great value in certain climate areas of the world.  

3) Extreme heat day 

A heat day (and the number of them of the indicator) is defined as a day whose maximum temperature 
reaches or exceeds the 35ºC threshold. This indicator is based on a fixed value, being therefore an indicator 
that relies on the known impact of this temperature threshold and does not depend on local climate. It is 
scalability is not appropriate but has a great value in certain climate areas of the world.  

4) Tropical nights 

The number of tropical nights per year has been obtained as the sum of the number of days in which the 
daily minimum temperature is greater than or equal to 20ºC for each year of the period in question. For 
example, for the reference period 1981-2010, for each of the 30 years considered, the number of times that 
the daily minimum temperature exceeds or equals 20ºC is counted. 

5) Equatorial nights 

The number of equatorial nights per year has been obtained as the sum of the number of days in which 
the daily minimum temperature is greater than or equal to 25ºC for each year of the period in question. For 
example, for the reference period 1981-2010, for each of the 30 years considered, the number of times that 
the daily minimum temperature exceeds or equals 25ºC is counted. 

6) Infernal nights 
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The number of infernal nights per year has been obtained as the sum of the number of days in which the 
daily minimum temperature is greater than or equal to 30ºC for each year of the period in question. For 
example, for the reference period 1981-2010, for each of the 30 years considered, the number of times that 
the daily minimum temperature exceeds or equals 30ºC is counted. 

7) Frost days 

The number of frosts days (strictly speaking, the number of frost nights) has been obtained as the sum of 
the number of days in which the daily minimum temperature is less than or equal to 0ºC for each year of 
the period in question. For example, for the reference period 1981-2010, for each of the 30 years considered, 
the number of times that the daily minimum temperature equals or falls below 0ºC is counted. 

8) Maximum spell length of thermal indicators 

For all the previous indicators (from 1-7), aside from the number of days that fall within the description 
given for each year, an additional step has been added by calculating the maximum number of consecutive 
days (spell) that each indicator applies. Here is therefore possible to assess the worst-case scenario of 
not just suffering this event but also its persistence in time within an area. 

9) Number of events of thermal indicators 

For all the previous single indicators (from 1-7), aside from the number of days that fall within the 
description given for each year, an additional step has been added by calculating the number of events 
that each indicator applies. An event has been defined as a spell of at least 3 consecutive days where the 
indicator is valid. Here is therefore possible to assess a scenario of not just suffering this event but also 
its persistence in time and the frequency of these events impact within an area. 

10) Mean maximum temperature 

The mean maximum temperature for each period and time range - where the time ranges considered have 
been both annual and seasonal - has been obtained by calculating the average of the daily maximum 
temperatures for each year of the specific time range of the period in question. For example, for the 
reference period 1981-2010, for each of the 30 years considered, the daily maximum temperature data 
associated with the time range of interest (annual or seasonal) is taken, and the average is calculated. 

11)  Mean minimum temperature 

The mean minimum temperature for each period and time range - where the time ranges considered have 
been both annual and seasonal - has been obtained by calculating the average of the daily minimum 
temperatures for each year of the specific time range of the period in question. For example, for the 
reference period 1981-2010, for each of the 30 years considered, the daily minimum temperature data 
associated with the time range of interest (annual or seasonal) is taken, and the average is calculated. 

 

 

12) Mean temperature  
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The Mean temperature for each period and time range - where the time ranges considered have been both 
annual and seasonal - has been obtained by calculating the average of the daily mean temperatures for 
each year of the specific time range of the period in question. For example, for the reference period 1981-
2010, for each of the 30 years considered, the daily mean temperature data associated with the time range 
of interest (annual or seasonal) is taken, and the average is calculated 

13) Heat waves 

A heat wave is meant to be an extremely high-temperature event that poses a risk for the human health, 
infrastructure and other critical assets. For a temperature event like this, in order to consider it extreme 
enough to be classified as a hazard and affect the normal development of local activities, it should cover 
a set of requirements such as: 

 
● High intensity. Temperature values need to be extremely high related to what is common in the 

local climate. This is to suppose a risk for the way infrastructure was previously designed and to 
what human bodies are normally used to deal with. With this, values need to be above the average 
maximum values registered in the warmest period of the year, i.e. summer.  

● Low frequency. Linked to the previous point, a heat wave should be rare to suppose an event 
extreme as a definition linked to a probability distribution of the local climate. Percentiles are 
therefore a good approach in this sense.  

● Certain duration in time.  For a temperature-related event, it is proved that the impact and risk grow 
bigger the more time it lasts rather than a great intensity event of some hours of duration. This is 
so since a long-time event will have the time to impact infrastructure (materials, thermal isolation…) 
and activities (leisure, outside labour) as well as the health of the population (worse rest, thermal 
shock…). 

 
Following these points, and including the particularities of the climate distributions of the case studies, 
an agreement was made to adapt the Heat Wave definition made by the Spanish AEMet to apply it to 
ICARIA, being this as: 

 

Heat wave: a temperature-related episode of at least three consecutive days where the weather 
observations considered register maximum temperatures above the 95% percentile of their daily maximum 
temperature records for the months of June to September of the 1981-2010 period. 
 
A heat wave episode is analysed based on several characteristics for each of which a different indicator 
has been defined: 

13.1. Average length of Heat waves 

The average length of a heat wave episode is defined as the number of consecutive days in which the 
maximum temperature is above the set threshold. It is calculated for each of the 30 years of each period 
in question. In the case of more than one heat wave in the same year, the value is obtained as the average 
of all cases. 

13.2. Average intensity of Heat Waves 

https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/estudios/Olas_calor/Olas_Calor_ActualizacionOctubre2022.pdf
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The average intensity of a heat wave episode is the average of the maximum temperature values recorded 
on the days constituting the heat wave episode. It is calculated for each of the 30 years of each period in 
question. If more than one heat wave in the same year, the value is the average of all. 

13.3. Maximum intensity of Heat Waves 

The maximum intensity of a heat wave episode is the most extreme value of the maximum temperature 
values recorded on the days constituting the heat wave episode. It is calculated for each of the 30 years 
of each period in question. If more than one heat wave in the same year, the value is the average of all. 

13.4. Number of Heat Waves 

The average number of heat waves per year makes it possible to analyse possible trends in the increase 
or decrease in the occurrence of this type of phenomena. It is calculated for each of the 30 years of each 
period in question. 

13.5. Number of days with maximum temperatures over Heat Wave threshold  

The number of days with Tmax > T(P95) [1981-2010 JJAS] expresses the number of days per year where 
the daily maximum temperature is higher than the 95th percentile obtained for the reference period 1981-
2010 between the months of June to September (inclusive). In this way, it is possible to quantify the 
number of days in which the temperature threshold necessary to consider a Heat Wave episode is 
exceeded, although it is not considered as such because it does not reach the minimum number of 
consecutive days with a maximum temperature above the established threshold value. 

14) Heat Index (HI) 

As a plus to considering heatwaves for temperature events, and under requirements from some of the 
attendees, a step beyond this work was agreed to be made in order to consider also the Heat Index, being 
acknowledged that in northern countries (such as Austria), heat waves tend to happen linked to relatively 
high relative humidity values, which add on to pose greater stress and risk for human bodies. In this sense, 
the standardized USA’s NWS Heat Index13 definition during Heat Wave events will be used, being for 
degrees Celsius (º C) this: 
 

 
 

using the following coefficients (T=air temperature ºC, R=relative humidity in %): 
 

 
 

                                                        
13 https://www.weather.gov/ama/heatindex 
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Figure A4.1. Example of a Heat Index chart with the estimated values of HI with Celsius ºC. 
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15) Universal Thermal Climate Index (UTCI) 

The Universal Thermal Climate Index (UTCI) serves as a bioclimatic indicator to characterize the 
physiological comfort of the human body in specific meteorological situations (Bröde et al., 2012). The 
UTCI is defined as the air temperature (Ta) of the reference condition causing the same model response 
as the actual condition. The discrepancy, or offset, between UTCI and air temperature depends on the 
actual values of air temperature, mean radiant temperature (Tr), wind speed (va), and humidity, expressed 
as either water vapour pressure (pa) or relative humidity (RH), as shown below: 

UTCI(Ta,Tr,va,pa) = Ta + Offset(Ta,Tr,va,pa) 

 

16) Urban Heat Island effect (UHI) 

The intensity of the heat island is the temperature difference between the warmest sector of the city and 
the non-urban space surrounding the city at a given time of the city and the non-urban space surrounding 
the city at a given time. Formally, 

ΔTu-r = Tu - Tr 

where ΔTu-r is the intensity of the heat island, Tu is the temperature of a point in the (warm) center of the 
city and Tr is the temperature of a point in the center of the city (warm) point of the city and Tr , the 
temperature of a rural or non-urban point close to the city. These places are selected as AEMet Vila 
Olimpica de Barcelona (0201D) station and Barcelona Airport (0076) station. In order to work in future 
times, the mean of daily values obtained from the calculation of UHI is done at annual and seasonal scale. 

 

Drought indicators 
 

17) Dry spell duration 

This indicator simply comes to define as a “dry spell” the amount of consecutive days in which the amount 
of precipitation registered at a certain point does not exceed 1mm. To improve the detail of the information 
provided, two sub-indicators were defined based on the previous definition, which are the maximum length 
of this spell, and its mean duration. 

18)  Standardised Precipitation Index (SPI) 

The Standardized Precipitation Index (𝑆𝑆𝑆, Standard Precipitation Index) (McKee et al.,1993) is defined as 
a numerical value representing the number of standard deviations of the precipitation falling over the 
accumulation period in question, with respect to the mean, once the original distribution of precipitation 
has been transformed to a normal distribution. 

In this way, a scale of values is defined which is grouped in sections related to the character of the 
precipitation (Table AX). It has the advantage of being able to work on temporal scales by identifying 
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different types of droughts and their responses to different natural systems. It is based on two 
assumptions: 

1) The variability of precipitation is greater than that of temperature and potential evapotranspiration 
(PET). 

2) All other variables are stationary over time. It is one of the most widely used indices in recent decades 
as it has a solid, robust and versatile basis. It can be calculated at different scales, so that the SPI at 3 
months will represent the short and medium term, e.g. seasonal precipitation; at 6 months it represents 
the medium term, e.g. potential precipitation deficit; and at 12, 24 and 60 months it represents long-
term precipitation patterns with impact on water supplies. 

Table A4.1. Climate classification depending on the Standardized Precipitation Index (SPI). 

Climate type SPI  Thresholds 
Extremely wet  SPI ≥ 2.0 
Severely wet  1.50 ≤ SPI < 2.00 

Moderately wet  0.50 ≤ SPI < 1.50 
Normal -0.50 ≤ SPI < 0.50 

Moderately dry  -1.50 ≤ SPI < -0.50 
Severely dry  -2.00 ≤ SPI < -1.50 

Extremely dry  SPI < -2.00 
 

19)  Standardized Precipitation Evapotranspiration Index (SPEI) 

The Standardized Precipitation Evapotranspiration Index (SPEI, proposed by Vicente-Serrano et al., -2010-
) is a variant of the 𝑆𝑆𝑆. It has a higher potential as it is sensitive to the impact of climate change by 
considering the water balance as the difference between monthly precipitation and potential 
evapotranspiration (calculated according to Thorntwaite). As with the 𝑆𝑆𝑆, a scale of values is defined and 
grouped into tranches (Table AX). 

Table A4.2. Climate classification depending on Standardized Precipitation Evapotranspiration and 
Precipitation Index (SPEI). 

Climate type SPI  Thresholds 

Extremely wet  SPEI ≥ 2.0 
Severely wet  1.50 ≤ SPEI < 2.00 

Moderately wet  0.50 ≤ SPEI < 1.50 
Normal -0.50 ≤ SPEI < 0.50 

Moderately dry  -1.50 ≤ SPEI < -0.50 
Severely dry  -2.00 ≤ SPEI < -1.50 

Extremely dry  SPEI < -2.00 

Forest fire indicator 

20) Canadian Fire Weather Index (FWI) 
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The occurrence of forest fires is extremely linked to both human actions and natural causes, with in some 
countries having around 80-90% (MITECO14, Spanish Government; BML15, Austrian Government) of total 
forest fires being provocated due to human negligence or conscious criminal action. Their occurrence can’t 
be therefore predicted, but the likelihood of a fire set to evolve into a great wildfire can be approached 
through some indexes that gather surface and atmospheric conditions. For ICARIA it’s been agreed that 
the already widely used Canadian Fire Weather Index (FWI, Stocks et al., 1989) will be taken into account. 
 
The FWI allows us to know how likely it is for a fire to start and propagate considering aspects such as: 

●   the humidity of the air at the beginning of the afternoon (when it has its lowest value); 
●   the temperature in the middle of the afternoon (when it has its highest value); 
●   the 24-hour total precipitation (from noon to noon); 
●   the maximum speed of the average wind. 

More details on the terminology, methodology and application can be found here16. The specific variations 
for the FWI presentation have been taken from the C3S portal app as they were obtained for CMIP5: 
https://climate.copernicus.eu/fire-weather-index 

 
 

Table A4.3. FWI classified in 6 classes of danger accordingly to EFFIS17 danger class levels definition. 
Fire danger is mapped in 6 classes (very low, low, medium, high, very high and extreme). The fire 

danger classes are the same for all countries. 

Fire Danges Classes  FWI ranges (upper bound excluded) 

Very low < 5.2 
Low 5.2 - 11.2 

Moderate 11.2 - 21.3 
High 21.3 - 38.0 

Very high 38.0 - 50.0 
Extreme >= 50.0 

 

 

 

 

Precipitation indicators 

21)  Number of heavy precipitation days 

                                                        
14https://www.miteco.gob.es/es/biodiversidad/temas/incendios-forestales/estadisticas-datos.aspx 
15https://info.bml.gv.at/en/topics/forests/forest-and-natural-hazards/forest-fires/forest-fires-in-
austria.html 
16 https://doi.org/10.5558/tfc65450-6 
17  http://effis.jrc.ec.europa.eu/about-effis/technical-background/fire-danger-forecast 

https://climate.copernicus.eu/fire-weather-index
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This indicator is defined to assess rainfall days with a remarkable accumulation, with a threshold defined 
as 24h accumulations of >20mm. 
 

22) Days with extreme heavy rain 

This indicator has been taken into consideration after a specific request from AMB CS, being actually 
defined by them following their interests and previous work done (AMB et. al, 2017). This indicator is defined 
to assess the extreme rainfall days, very common at the Mediterranean shores, with two thresholds defined 
to account for different magnitudes of events: total rainfall accumulations (24h) of >50mm, and of 
>100mm.  

23) Yearly and seasonal rainfall absolute change 

The accumulated precipitation for each period and time range - where the time ranges considered have 
been both annual and seasonal - has been obtained by calculating the sum of the daily precipitation for 
each year of the specific time range of the period in question. For example, for the reference period 1981-
2010, for each of the 30 years considered, the daily precipitation data associated with the time range of 
interest (annual or seasonal) are taken, and the sum is calculated. The results are presented in “mm”, 
accounting for the absolute change regardless of the mean climate rainfall of the area of interest. 

24) Yearly and seasonal rainfall relative change 

The accumulated precipitation for each period and time range - where the time ranges considered have 
been both annual and seasonal - has been obtained by calculating the sum of the daily precipitation for 
each year of the specific time range of the period in question. For example, for the reference period 1981-
2010, for each of the 30 years considered, the daily precipitation data associated with the time range of 
interest (annual or seasonal) are taken, and the sum is calculated. The results are presented in a relative 
change “%”, accounting for the total rainfall change with regard of the actual mean climate rainfall of the 
area of interest. 
 

25) Climate Change Factor (CCF) 

The CCF (or Climate Change Factor) of the IDF (Intensity Duration Frequency) curves is the ratio between 
the projected SSP IDF scenario (2015-2100) and the historical IDF curves (1951-2014). The IDF curves are 
obtained by calculating the following: First, the return periods for each observatory and the amount of 
precipitation associated with each of them by performing a Gumbel distribution (or generalized extreme 
value distribution). Second, the precipitation intensity factor, calculated using the n index (Monjo, R. 2016) 
for each time scale. Third, and due to the lack of data (the availability of high temporal resolution is scarce 
and limited to a few observatories), an extrapolation of the temporal ratio between the high temporal 
resolution (up to one minute) and the daily resolution of the n-index has been performed. Once all the 
parameters are calculated for a given duration and return period or frequency, the specific intensity is 
obtained. 
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Oceanic indicators 

26) Storm surge 

The storm surge is calculated by disaggregating the total sea level into three components: the 
astronomical tide, the mean sea level and the meteorological tide. The meteorological tide represents the 
residual component of the total sea level itself, and is projected into the future using the analog method 
carried out by FIClima. From the projections, the return periods corresponding to the extreme events are 
extracted for each specific period of each climate scenario, which will provide us with a picture of the 
evolution of the hazard in the coastal area. 

 
27) Significant and maximum wave height 

 
The Significant Wave Height is determined statistically by calculating the average of approximately one-
third of the highest waves in a representative sample. This measure is used to characterise the overall 
state of the sea, considering multiple waves rather than focusing on a single one. 
 
The Maximum Wave Height is defined as the vertical distance between the crest and trough of an individual 
wave. This parameter is measured under ideal conditions, from the base to the peak of the wave. It is a 
point metric that highlights the maximum amplitude of a specific wave at a given moment.  

Wind indicators 

28) Extreme wind gusts 
 

In order to analyze the wind gust extremes, a selection of quantiles was made for each time range to 
extract the values that can be considered as peaks in the entire data series. This allows us to determine 
each percentile for each time period and obtain the values in the future. 
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